Metamath Proof Explorer


Theorem f1ores

Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998)

Ref Expression
Assertion f1ores ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) )

Proof

Step Hyp Ref Expression
1 f1ssres ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶1-1𝐵 )
2 f1f1orn ( ( 𝐹𝐶 ) : 𝐶1-1𝐵 → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ran ( 𝐹𝐶 ) )
3 1 2 syl ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ran ( 𝐹𝐶 ) )
4 df-ima ( 𝐹𝐶 ) = ran ( 𝐹𝐶 )
5 f1oeq3 ( ( 𝐹𝐶 ) = ran ( 𝐹𝐶 ) → ( ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) ↔ ( 𝐹𝐶 ) : 𝐶1-1-onto→ ran ( 𝐹𝐶 ) ) )
6 4 5 ax-mp ( ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) ↔ ( 𝐹𝐶 ) : 𝐶1-1-onto→ ran ( 𝐹𝐶 ) )
7 3 6 sylibr ( ( 𝐹 : 𝐴1-1𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) )