| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ssres |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ) |
| 2 |
|
f1f1orn |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) |
| 4 |
|
df-ima |
⊢ ( 𝐹 “ 𝐶 ) = ran ( 𝐹 ↾ 𝐶 ) |
| 5 |
|
f1oeq3 |
⊢ ( ( 𝐹 “ 𝐶 ) = ran ( 𝐹 ↾ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ↔ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ↔ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) |
| 7 |
3 6
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |