Metamath Proof Explorer


Theorem f1osetex

Description: The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024) (Revised by AV, 8-Aug-2024) (Proof shortened by SN, 22-Aug-2024)

Ref Expression
Assertion f1osetex { 𝑓𝑓 : 𝐴1-1-onto𝐵 } ∈ V

Proof

Step Hyp Ref Expression
1 fosetex { 𝑓𝑓 : 𝐴onto𝐵 } ∈ V
2 f1ofo ( 𝑓 : 𝐴1-1-onto𝐵𝑓 : 𝐴onto𝐵 )
3 2 ss2abi { 𝑓𝑓 : 𝐴1-1-onto𝐵 } ⊆ { 𝑓𝑓 : 𝐴onto𝐵 }
4 1 3 ssexi { 𝑓𝑓 : 𝐴1-1-onto𝐵 } ∈ V