Metamath Proof Explorer


Theorem f1osn

Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses f1osn.1 𝐴 ∈ V
f1osn.2 𝐵 ∈ V
Assertion f1osn { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐵 }

Proof

Step Hyp Ref Expression
1 f1osn.1 𝐴 ∈ V
2 f1osn.2 𝐵 ∈ V
3 1 2 fnsn { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐴 }
4 2 1 fnsn { ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐵 }
5 1 2 cnvsn { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ }
6 5 fneq1i ( { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐵 } ↔ { ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐵 } )
7 4 6 mpbir { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐵 }
8 dff1o4 ( { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐵 } ↔ ( { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐴 } ∧ { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐵 } ) )
9 3 7 8 mpbir2an { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐵 }