Step |
Hyp |
Ref |
Expression |
1 |
|
f1ossf1o.x |
⊢ 𝑋 = { 𝑤 ∈ 𝐴 ∣ ( 𝜓 ∧ 𝜒 ) } |
2 |
|
f1ossf1o.y |
⊢ 𝑌 = { 𝑤 ∈ 𝐴 ∣ 𝜓 } |
3 |
|
f1ossf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
4 |
|
f1ossf1o.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) |
5 |
|
f1ossf1o.b |
⊢ ( 𝜑 → 𝐺 : 𝑌 –1-1-onto→ 𝐶 ) |
6 |
|
f1ossf1o.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵 ) → ( 𝜏 ↔ [ 𝑥 / 𝑤 ] 𝜒 ) ) |
7 |
4 5 6
|
f1oresrab |
⊢ ( 𝜑 → ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) : { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) |
8 |
|
simpl |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜓 ) |
9 |
8
|
a1i |
⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝜓 ∧ 𝜒 ) → 𝜓 ) ) |
10 |
9
|
ss2rabi |
⊢ { 𝑤 ∈ 𝐴 ∣ ( 𝜓 ∧ 𝜒 ) } ⊆ { 𝑤 ∈ 𝐴 ∣ 𝜓 } |
11 |
10 1 2
|
3sstr4i |
⊢ 𝑋 ⊆ 𝑌 |
12 |
11
|
a1i |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
13 |
12
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
14 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
15 |
2
|
rabeqi |
⊢ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } = { 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∣ [ 𝑥 / 𝑤 ] 𝜒 } |
16 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑥 |
17 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐴 |
18 |
|
nfs1v |
⊢ Ⅎ 𝑤 [ 𝑥 / 𝑤 ] 𝜓 |
19 |
|
sbequ12 |
⊢ ( 𝑤 = 𝑥 → ( 𝜓 ↔ [ 𝑥 / 𝑤 ] 𝜓 ) ) |
20 |
16 17 18 19
|
elrabf |
⊢ ( 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ [ 𝑥 / 𝑤 ] 𝜓 ) ) |
21 |
20
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ [ 𝑥 / 𝑤 ] 𝜓 ) ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) |
22 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ [ 𝑥 / 𝑤 ] 𝜓 ) ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) ) |
23 |
21 22
|
bitri |
⊢ ( ( 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) ) |
24 |
23
|
rabbia2 |
⊢ { 𝑥 ∈ { 𝑤 ∈ 𝐴 ∣ 𝜓 } ∣ [ 𝑥 / 𝑤 ] 𝜒 } = { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
26 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜓 ∧ 𝜒 ) |
27 |
|
nfs1v |
⊢ Ⅎ 𝑤 [ 𝑥 / 𝑤 ] 𝜒 |
28 |
18 27
|
nfan |
⊢ Ⅎ 𝑤 ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) |
29 |
|
sbequ12 |
⊢ ( 𝑤 = 𝑥 → ( 𝜒 ↔ [ 𝑥 / 𝑤 ] 𝜒 ) ) |
30 |
19 29
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜓 ∧ 𝜒 ) ↔ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) ) ) |
31 |
17 25 26 28 30
|
cbvrabw |
⊢ { 𝑤 ∈ 𝐴 ∣ ( 𝜓 ∧ 𝜒 ) } = { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } |
32 |
1 31
|
eqtr2i |
⊢ { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } = 𝑋 |
33 |
15 24 32
|
3eqtri |
⊢ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } = 𝑋 |
34 |
33
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } = 𝑋 ) |
35 |
14 34
|
reseq12d |
⊢ ( 𝜑 → ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) = ( ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ↾ 𝑋 ) ) |
36 |
3
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
37 |
13 35 36
|
3eqtr4rd |
⊢ ( 𝜑 → 𝐹 = ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) ) |
38 |
15 24
|
eqtr2i |
⊢ { 𝑥 ∈ 𝐴 ∣ ( [ 𝑥 / 𝑤 ] 𝜓 ∧ [ 𝑥 / 𝑤 ] 𝜒 ) } = { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } |
39 |
1 31 38
|
3eqtri |
⊢ 𝑋 = { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } |
40 |
39
|
a1i |
⊢ ( 𝜑 → 𝑋 = { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) |
41 |
|
eqidd |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐶 ∣ 𝜏 } = { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) |
42 |
37 40 41
|
f1oeq123d |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ↔ ( 𝐺 ↾ { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } ) : { 𝑥 ∈ 𝑌 ∣ [ 𝑥 / 𝑤 ] 𝜒 } –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) ) |
43 |
7 42
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ { 𝑦 ∈ 𝐶 ∣ 𝜏 } ) |