| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ossf1o.x | ⊢ 𝑋  =  { 𝑤  ∈  𝐴  ∣  ( 𝜓  ∧  𝜒 ) } | 
						
							| 2 |  | f1ossf1o.y | ⊢ 𝑌  =  { 𝑤  ∈  𝐴  ∣  𝜓 } | 
						
							| 3 |  | f1ossf1o.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) | 
						
							| 4 |  | f1ossf1o.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝑌  ↦  𝐵 ) | 
						
							| 5 |  | f1ossf1o.b | ⊢ ( 𝜑  →  𝐺 : 𝑌 –1-1-onto→ 𝐶 ) | 
						
							| 6 |  | f1ossf1o.s | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌  ∧  𝑦  =  𝐵 )  →  ( 𝜏  ↔  [ 𝑥  /  𝑤 ] 𝜒 ) ) | 
						
							| 7 | 4 5 6 | f1oresrab | ⊢ ( 𝜑  →  ( 𝐺  ↾  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } ) : { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } –1-1-onto→ { 𝑦  ∈  𝐶  ∣  𝜏 } ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜓 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑤  ∈  𝐴  →  ( ( 𝜓  ∧  𝜒 )  →  𝜓 ) ) | 
						
							| 10 | 9 | ss2rabi | ⊢ { 𝑤  ∈  𝐴  ∣  ( 𝜓  ∧  𝜒 ) }  ⊆  { 𝑤  ∈  𝐴  ∣  𝜓 } | 
						
							| 11 | 10 1 2 | 3sstr4i | ⊢ 𝑋  ⊆  𝑌 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  𝑋  ⊆  𝑌 ) | 
						
							| 13 | 12 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑌  ↦  𝐵 )  ↾  𝑋 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 14 | 4 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝑌  ↦  𝐵 ) ) | 
						
							| 15 | 2 | rabeqi | ⊢ { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 }  =  { 𝑥  ∈  { 𝑤  ∈  𝐴  ∣  𝜓 }  ∣  [ 𝑥  /  𝑤 ] 𝜒 } | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑤 𝑥 | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑤 𝐴 | 
						
							| 18 |  | nfs1v | ⊢ Ⅎ 𝑤 [ 𝑥  /  𝑤 ] 𝜓 | 
						
							| 19 |  | sbequ12 | ⊢ ( 𝑤  =  𝑥  →  ( 𝜓  ↔  [ 𝑥  /  𝑤 ] 𝜓 ) ) | 
						
							| 20 | 16 17 18 19 | elrabf | ⊢ ( 𝑥  ∈  { 𝑤  ∈  𝐴  ∣  𝜓 }  ↔  ( 𝑥  ∈  𝐴  ∧  [ 𝑥  /  𝑤 ] 𝜓 ) ) | 
						
							| 21 | 20 | anbi1i | ⊢ ( ( 𝑥  ∈  { 𝑤  ∈  𝐴  ∣  𝜓 }  ∧  [ 𝑥  /  𝑤 ] 𝜒 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  [ 𝑥  /  𝑤 ] 𝜓 )  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) ) | 
						
							| 22 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  [ 𝑥  /  𝑤 ] 𝜓 )  ∧  [ 𝑥  /  𝑤 ] 𝜒 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) ) ) | 
						
							| 23 | 21 22 | bitri | ⊢ ( ( 𝑥  ∈  { 𝑤  ∈  𝐴  ∣  𝜓 }  ∧  [ 𝑥  /  𝑤 ] 𝜒 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) ) ) | 
						
							| 24 | 23 | rabbia2 | ⊢ { 𝑥  ∈  { 𝑤  ∈  𝐴  ∣  𝜓 }  ∣  [ 𝑥  /  𝑤 ] 𝜒 }  =  { 𝑥  ∈  𝐴  ∣  ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) } | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 26 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜓  ∧  𝜒 ) | 
						
							| 27 |  | nfs1v | ⊢ Ⅎ 𝑤 [ 𝑥  /  𝑤 ] 𝜒 | 
						
							| 28 | 18 27 | nfan | ⊢ Ⅎ 𝑤 ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) | 
						
							| 29 |  | sbequ12 | ⊢ ( 𝑤  =  𝑥  →  ( 𝜒  ↔  [ 𝑥  /  𝑤 ] 𝜒 ) ) | 
						
							| 30 | 19 29 | anbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝜓  ∧  𝜒 )  ↔  ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) ) ) | 
						
							| 31 | 17 25 26 28 30 | cbvrabw | ⊢ { 𝑤  ∈  𝐴  ∣  ( 𝜓  ∧  𝜒 ) }  =  { 𝑥  ∈  𝐴  ∣  ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) } | 
						
							| 32 | 1 31 | eqtr2i | ⊢ { 𝑥  ∈  𝐴  ∣  ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) }  =  𝑋 | 
						
							| 33 | 15 24 32 | 3eqtri | ⊢ { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 }  =  𝑋 | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 }  =  𝑋 ) | 
						
							| 35 | 14 34 | reseq12d | ⊢ ( 𝜑  →  ( 𝐺  ↾  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } )  =  ( ( 𝑥  ∈  𝑌  ↦  𝐵 )  ↾  𝑋 ) ) | 
						
							| 36 | 3 | a1i | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 37 | 13 35 36 | 3eqtr4rd | ⊢ ( 𝜑  →  𝐹  =  ( 𝐺  ↾  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } ) ) | 
						
							| 38 | 15 24 | eqtr2i | ⊢ { 𝑥  ∈  𝐴  ∣  ( [ 𝑥  /  𝑤 ] 𝜓  ∧  [ 𝑥  /  𝑤 ] 𝜒 ) }  =  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } | 
						
							| 39 | 1 31 38 | 3eqtri | ⊢ 𝑋  =  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  𝑋  =  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } ) | 
						
							| 41 |  | eqidd | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐶  ∣  𝜏 }  =  { 𝑦  ∈  𝐶  ∣  𝜏 } ) | 
						
							| 42 | 37 40 41 | f1oeq123d | ⊢ ( 𝜑  →  ( 𝐹 : 𝑋 –1-1-onto→ { 𝑦  ∈  𝐶  ∣  𝜏 }  ↔  ( 𝐺  ↾  { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } ) : { 𝑥  ∈  𝑌  ∣  [ 𝑥  /  𝑤 ] 𝜒 } –1-1-onto→ { 𝑦  ∈  𝐶  ∣  𝜏 } ) ) | 
						
							| 43 | 7 42 | mpbird | ⊢ ( 𝜑  →  𝐹 : 𝑋 –1-1-onto→ { 𝑦  ∈  𝐶  ∣  𝜏 } ) |