| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  →  𝐹  Fn  𝐴 ) | 
						
							| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | f1ofn | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴  →  𝐺  Fn  𝐴 ) | 
						
							| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  →  𝐺  Fn  𝐴 ) | 
						
							| 5 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 6 |  | simplrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) | 
						
							| 7 |  | simplrl | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  dom  ( 𝐹  ∖   I  )  ≈  2o ) | 
						
							| 8 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 9 | 7 8 | breqtrdi | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  dom  ( 𝐹  ∖   I  )  ≈  suc  1o ) | 
						
							| 10 | 6 9 | eqbrtrd | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  dom  ( 𝐺  ∖   I  )  ≈  suc  1o ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  𝑥  ∈  dom  ( 𝐺  ∖   I  ) ) | 
						
							| 12 |  | dif1ennn | ⊢ ( ( 1o  ∈  ω  ∧  dom  ( 𝐺  ∖   I  )  ≈  suc  1o  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ≈  1o ) | 
						
							| 13 | 5 10 11 12 | mp3an2i | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ≈  1o ) | 
						
							| 14 |  | euen1b | ⊢ ( ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ≈  1o  ↔  ∃! 𝑦 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 15 |  | eumo | ⊢ ( ∃! 𝑦 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  →  ∃* 𝑦 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 16 | 14 15 | sylbi | ⊢ ( ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ≈  1o  →  ∃* 𝑦 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 17 | 13 16 | syl | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ∃* 𝑦 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 18 |  | f1omvdmvd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝑥  ∈  dom  ( 𝐹  ∖   I  ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  →  ( 𝑥  ∈  dom  ( 𝐹  ∖   I  )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝑥 } ) ) ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  →  ( 𝑥  ∈  dom  ( 𝐹  ∖   I  )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝑥 } ) ) ) | 
						
							| 21 |  | eleq2 | ⊢ ( dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  )  →  ( 𝑥  ∈  dom  ( 𝐺  ∖   I  )  ↔  𝑥  ∈  dom  ( 𝐹  ∖   I  ) ) ) | 
						
							| 22 | 21 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  →  ( 𝑥  ∈  dom  ( 𝐺  ∖   I  )  ↔  𝑥  ∈  dom  ( 𝐹  ∖   I  ) ) ) | 
						
							| 23 |  | difeq1 | ⊢ ( dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  )  →  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  =  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 24 | 23 | eleq2d | ⊢ ( dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝑥 } ) ) ) | 
						
							| 25 | 24 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝑥 } ) ) ) | 
						
							| 26 | 20 22 25 | 3imtr4d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  →  ( 𝑥  ∈  dom  ( 𝐺  ∖   I  )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 28 |  | f1omvdmvd | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐴  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 29 | 28 | ad4ant24 | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) | 
						
							| 30 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 31 |  | fvex | ⊢ ( 𝐺 ‘ 𝑥 )  ∈  V | 
						
							| 32 | 30 31 | pm3.2i | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  V  ∧  ( 𝐺 ‘ 𝑥 )  ∈  V ) | 
						
							| 33 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) ) | 
						
							| 34 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  →  ( 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ↔  ( 𝐺 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) ) | 
						
							| 35 | 33 34 | moi | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∈  V  ∧  ( 𝐺 ‘ 𝑥 )  ∈  V )  ∧  ∃* 𝑦 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ∧  ( ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 36 | 32 35 | mp3an1 | ⊢ ( ( ∃* 𝑦 𝑦  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ∧  ( ( 𝐹 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } )  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( dom  ( 𝐺  ∖   I  )  ∖  { 𝑥 } ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 37 | 17 27 29 36 | syl12anc | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 38 | 37 | adantlr | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 39 |  | simplrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) | 
						
							| 40 | 39 | eleq2d | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  dom  ( 𝐺  ∖   I  )  ↔  𝑥  ∈  dom  ( 𝐹  ∖   I  ) ) ) | 
						
							| 41 |  | fnelnfp | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  dom  ( 𝐹  ∖   I  )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  𝑥 ) ) | 
						
							| 42 | 2 41 | sylan | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  dom  ( 𝐹  ∖   I  )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  𝑥 ) ) | 
						
							| 43 | 40 42 | bitrd | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  dom  ( 𝐺  ∖   I  )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  𝑥 ) ) | 
						
							| 44 | 43 | necon2bbid | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ↔  ¬  𝑥  ∈  dom  ( 𝐺  ∖   I  ) ) ) | 
						
							| 45 | 44 | biimpar | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐹 ‘ 𝑥 )  =  𝑥 ) | 
						
							| 46 |  | fnelnfp | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  dom  ( 𝐺  ∖   I  )  ↔  ( 𝐺 ‘ 𝑥 )  ≠  𝑥 ) ) | 
						
							| 47 | 4 46 | sylan | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  dom  ( 𝐺  ∖   I  )  ↔  ( 𝐺 ‘ 𝑥 )  ≠  𝑥 ) ) | 
						
							| 48 | 47 | necon2bbid | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑥 )  =  𝑥  ↔  ¬  𝑥  ∈  dom  ( 𝐺  ∖   I  ) ) ) | 
						
							| 49 | 48 | biimpar | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐺 ‘ 𝑥 )  =  𝑥 ) | 
						
							| 50 | 45 49 | eqtr4d | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑥  ∈  dom  ( 𝐺  ∖   I  ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 51 | 38 50 | pm2.61dan | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 52 | 2 4 51 | eqfnfvd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴 )  ∧  ( dom  ( 𝐹  ∖   I  )  ≈  2o  ∧  dom  ( 𝐺  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) )  →  𝐹  =  𝐺 ) |