Metamath Proof Explorer


Theorem f1oun

Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998)

Ref Expression
Assertion f1oun ( ( ( 𝐹 : 𝐴1-1-onto𝐵𝐺 : 𝐶1-1-onto𝐷 ) ∧ ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) ) → ( 𝐹𝐺 ) : ( 𝐴𝐶 ) –1-1-onto→ ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 dff1o4 ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 Fn 𝐴 𝐹 Fn 𝐵 ) )
2 dff1o4 ( 𝐺 : 𝐶1-1-onto𝐷 ↔ ( 𝐺 Fn 𝐶 𝐺 Fn 𝐷 ) )
3 fnun ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐶 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) )
4 3 ex ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐶 ) → ( ( 𝐴𝐶 ) = ∅ → ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) ) )
5 fnun ( ( ( 𝐹 Fn 𝐵 𝐺 Fn 𝐷 ) ∧ ( 𝐵𝐷 ) = ∅ ) → ( 𝐹 𝐺 ) Fn ( 𝐵𝐷 ) )
6 cnvun ( 𝐹𝐺 ) = ( 𝐹 𝐺 )
7 6 fneq1i ( ( 𝐹𝐺 ) Fn ( 𝐵𝐷 ) ↔ ( 𝐹 𝐺 ) Fn ( 𝐵𝐷 ) )
8 5 7 sylibr ( ( ( 𝐹 Fn 𝐵 𝐺 Fn 𝐷 ) ∧ ( 𝐵𝐷 ) = ∅ ) → ( 𝐹𝐺 ) Fn ( 𝐵𝐷 ) )
9 8 ex ( ( 𝐹 Fn 𝐵 𝐺 Fn 𝐷 ) → ( ( 𝐵𝐷 ) = ∅ → ( 𝐹𝐺 ) Fn ( 𝐵𝐷 ) ) )
10 4 9 im2anan9 ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐶 ) ∧ ( 𝐹 Fn 𝐵 𝐺 Fn 𝐷 ) ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) ∧ ( 𝐹𝐺 ) Fn ( 𝐵𝐷 ) ) ) )
11 10 an4s ( ( ( 𝐹 Fn 𝐴 𝐹 Fn 𝐵 ) ∧ ( 𝐺 Fn 𝐶 𝐺 Fn 𝐷 ) ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) ∧ ( 𝐹𝐺 ) Fn ( 𝐵𝐷 ) ) ) )
12 1 2 11 syl2anb ( ( 𝐹 : 𝐴1-1-onto𝐵𝐺 : 𝐶1-1-onto𝐷 ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) ∧ ( 𝐹𝐺 ) Fn ( 𝐵𝐷 ) ) ) )
13 dff1o4 ( ( 𝐹𝐺 ) : ( 𝐴𝐶 ) –1-1-onto→ ( 𝐵𝐷 ) ↔ ( ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) ∧ ( 𝐹𝐺 ) Fn ( 𝐵𝐷 ) ) )
14 12 13 syl6ibr ( ( 𝐹 : 𝐴1-1-onto𝐵𝐺 : 𝐶1-1-onto𝐷 ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( 𝐹𝐺 ) : ( 𝐴𝐶 ) –1-1-onto→ ( 𝐵𝐷 ) ) )
15 14 imp ( ( ( 𝐹 : 𝐴1-1-onto𝐵𝐺 : 𝐶1-1-onto𝐷 ) ∧ ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) ) → ( 𝐹𝐺 ) : ( 𝐴𝐶 ) –1-1-onto→ ( 𝐵𝐷 ) )