Description: The range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | f1ovv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
2 | fornex | ⊢ ( 𝐴 ∈ V → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) | |
3 | 1 2 | syl5com | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ V → 𝐵 ∈ V ) ) |
4 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
5 | f1dmex | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
6 | 5 | ex | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐵 ∈ V → 𝐴 ∈ V ) ) |
7 | 4 6 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐵 ∈ V → 𝐴 ∈ V ) ) |
8 | 3 7 | impbid | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) |