Metamath Proof Explorer


Theorem f1ovv

Description: The range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019)

Ref Expression
Assertion f1ovv ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 f1ofo ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴onto𝐵 )
2 fornex ( 𝐴 ∈ V → ( 𝐹 : 𝐴onto𝐵𝐵 ∈ V ) )
3 1 2 syl5com ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐴 ∈ V → 𝐵 ∈ V ) )
4 f1of1 ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1𝐵 )
5 f1dmex ( ( 𝐹 : 𝐴1-1𝐵𝐵 ∈ V ) → 𝐴 ∈ V )
6 5 ex ( 𝐹 : 𝐴1-1𝐵 → ( 𝐵 ∈ V → 𝐴 ∈ V ) )
7 4 6 syl ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐵 ∈ V → 𝐴 ∈ V ) )
8 3 7 impbid ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) )