Metamath Proof Explorer


Theorem f1owe

Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997)

Ref Expression
Hypothesis f1owe.1 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝐹𝑥 ) 𝑆 ( 𝐹𝑦 ) }
Assertion f1owe ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝑆 We 𝐵𝑅 We 𝐴 ) )

Proof

Step Hyp Ref Expression
1 f1owe.1 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝐹𝑥 ) 𝑆 ( 𝐹𝑦 ) }
2 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
3 2 breq1d ( 𝑥 = 𝑧 → ( ( 𝐹𝑥 ) 𝑆 ( 𝐹𝑦 ) ↔ ( 𝐹𝑧 ) 𝑆 ( 𝐹𝑦 ) ) )
4 fveq2 ( 𝑦 = 𝑤 → ( 𝐹𝑦 ) = ( 𝐹𝑤 ) )
5 4 breq2d ( 𝑦 = 𝑤 → ( ( 𝐹𝑧 ) 𝑆 ( 𝐹𝑦 ) ↔ ( 𝐹𝑧 ) 𝑆 ( 𝐹𝑤 ) ) )
6 3 5 1 brabg ( ( 𝑧𝐴𝑤𝐴 ) → ( 𝑧 𝑅 𝑤 ↔ ( 𝐹𝑧 ) 𝑆 ( 𝐹𝑤 ) ) )
7 6 rgen2 𝑧𝐴𝑤𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹𝑧 ) 𝑆 ( 𝐹𝑤 ) )
8 df-isom ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐹 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹𝑧 ) 𝑆 ( 𝐹𝑤 ) ) ) )
9 isowe ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 We 𝐴𝑆 We 𝐵 ) )
10 8 9 sylbir ( ( 𝐹 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹𝑧 ) 𝑆 ( 𝐹𝑤 ) ) ) → ( 𝑅 We 𝐴𝑆 We 𝐵 ) )
11 7 10 mpan2 ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝑅 We 𝐴𝑆 We 𝐵 ) )
12 11 biimprd ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝑆 We 𝐵𝑅 We 𝐴 ) )