Step |
Hyp |
Ref |
Expression |
1 |
|
f1owe.1 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) } |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
3 |
2
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
5 |
4
|
breq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
6 |
3 5 1
|
brabg |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) |
7 |
6
|
rgen2 |
⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) |
8 |
|
df-isom |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) ) |
9 |
|
isowe |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐵 ) ) |
10 |
8 9
|
sylbir |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐵 ) ) |
11 |
7 10
|
mpan2 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐵 ) ) |
12 |
11
|
biimprd |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |