Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | f1resf1 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ssres | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ) | |
2 | 1 | 3adant3 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ) |
3 | frn | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 → ran ( 𝐹 ↾ 𝐶 ) ⊆ 𝐷 ) | |
4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) → ran ( 𝐹 ↾ 𝐶 ) ⊆ 𝐷 ) |
5 | f1ssr | ⊢ ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ran ( 𝐹 ↾ 𝐶 ) ⊆ 𝐷 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐷 ) | |
6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐷 ) |