Step |
Hyp |
Ref |
Expression |
1 |
|
gim0to0ALT.a |
⊢ 𝐴 = ( Base ‘ 𝑅 ) |
2 |
|
gim0to0ALT.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
gim0to0ALT.n |
⊢ 𝑁 = ( 0g ‘ 𝑆 ) |
4 |
|
gim0to0ALT.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
7 |
1 2 4 3
|
ghmf1 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 𝑁 → 𝑥 = 0 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 𝑁 → 𝑥 = 0 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = 𝑁 ↔ ( 𝐹 ‘ 𝑋 ) = 𝑁 ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
12 |
10 11
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑁 → 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) ) |
13 |
12
|
rspcv |
⊢ ( 𝑋 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 𝑁 → 𝑥 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 𝑁 → 𝑥 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) ) |
15 |
8 14
|
sylbid |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) ) |
16 |
15
|
ex |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑋 ∈ 𝐴 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) ) ) |
17 |
16
|
com23 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝑋 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) ) ) |
18 |
17
|
3imp |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 → 𝑋 = 0 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑋 = 0 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 0 ) ) |
20 |
4 3
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 0 ) = 𝑁 ) |
21 |
5 20
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ 0 ) = 𝑁 ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 0 ) = 𝑁 ) |
23 |
19 22
|
sylan9eqr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑋 = 0 ) → ( 𝐹 ‘ 𝑋 ) = 𝑁 ) |
24 |
23
|
ex |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 = 0 → ( 𝐹 ‘ 𝑋 ) = 𝑁 ) ) |
25 |
18 24
|
impbid |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 ↔ 𝑋 = 0 ) ) |