Metamath Proof Explorer


Theorem f1rnen

Description: Equinumerosity of the range of an injective function. (Contributed by Thierry Arnoux, 7-Jul-2023)

Ref Expression
Assertion f1rnen ( ( 𝐹 : 𝐴1-1𝐵𝐴𝑉 ) → ran 𝐹𝐴 )

Proof

Step Hyp Ref Expression
1 f1fn ( 𝐹 : 𝐴1-1𝐵𝐹 Fn 𝐴 )
2 1 adantr ( ( 𝐹 : 𝐴1-1𝐵𝐴𝑉 ) → 𝐹 Fn 𝐴 )
3 fnima ( 𝐹 Fn 𝐴 → ( 𝐹𝐴 ) = ran 𝐹 )
4 2 3 syl ( ( 𝐹 : 𝐴1-1𝐵𝐴𝑉 ) → ( 𝐹𝐴 ) = ran 𝐹 )
5 ssid 𝐴𝐴
6 f1imaeng ( ( 𝐹 : 𝐴1-1𝐵𝐴𝐴𝐴𝑉 ) → ( 𝐹𝐴 ) ≈ 𝐴 )
7 5 6 mp3an2 ( ( 𝐹 : 𝐴1-1𝐵𝐴𝑉 ) → ( 𝐹𝐴 ) ≈ 𝐴 )
8 4 7 eqbrtrrd ( ( 𝐹 : 𝐴1-1𝐵𝐴𝑉 ) → ran 𝐹𝐴 )