Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | f1setex | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetex | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
2 | df-f1 | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝑓 ) ) | |
3 | 2 | abbii | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } = { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝑓 ) } |
4 | abanssl | ⊢ { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝑓 ) } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } | |
5 | 3 4 | eqsstri | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } |
6 | 5 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ) |
7 | 1 6 | ssexd | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ V ) |