Metamath Proof Explorer


Theorem f1setex

Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024)

Ref Expression
Assertion f1setex ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴1-1𝐵 } ∈ V )

Proof

Step Hyp Ref Expression
1 fsetex ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴𝐵 } ∈ V )
2 df-f1 ( 𝑓 : 𝐴1-1𝐵 ↔ ( 𝑓 : 𝐴𝐵 ∧ Fun 𝑓 ) )
3 2 abbii { 𝑓𝑓 : 𝐴1-1𝐵 } = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ Fun 𝑓 ) }
4 abanssl { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ Fun 𝑓 ) } ⊆ { 𝑓𝑓 : 𝐴𝐵 }
5 3 4 eqsstri { 𝑓𝑓 : 𝐴1-1𝐵 } ⊆ { 𝑓𝑓 : 𝐴𝐵 }
6 5 a1i ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴1-1𝐵 } ⊆ { 𝑓𝑓 : 𝐴𝐵 } )
7 1 6 ssexd ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴1-1𝐵 } ∈ V )