Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | f1ss | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐹 : 𝐴 –1-1→ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
2 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐶 ) | |
3 | 1 2 | sylan | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐶 ) |
4 | df-f1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) | |
5 | 4 | simprbi | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun ◡ 𝐹 ) |
6 | 5 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → Fun ◡ 𝐹 ) |
7 | df-f1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ) | |
8 | 3 6 7 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐹 : 𝐴 –1-1→ 𝐶 ) |