Metamath Proof Explorer


Theorem f1ss

Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013)

Ref Expression
Assertion f1ss ( ( 𝐹 : 𝐴1-1𝐵𝐵𝐶 ) → 𝐹 : 𝐴1-1𝐶 )

Proof

Step Hyp Ref Expression
1 f1f ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴𝐵 )
2 fss ( ( 𝐹 : 𝐴𝐵𝐵𝐶 ) → 𝐹 : 𝐴𝐶 )
3 1 2 sylan ( ( 𝐹 : 𝐴1-1𝐵𝐵𝐶 ) → 𝐹 : 𝐴𝐶 )
4 df-f1 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ Fun 𝐹 ) )
5 4 simprbi ( 𝐹 : 𝐴1-1𝐵 → Fun 𝐹 )
6 5 adantr ( ( 𝐹 : 𝐴1-1𝐵𝐵𝐶 ) → Fun 𝐹 )
7 df-f1 ( 𝐹 : 𝐴1-1𝐶 ↔ ( 𝐹 : 𝐴𝐶 ∧ Fun 𝐹 ) )
8 3 6 7 sylanbrc ( ( 𝐹 : 𝐴1-1𝐵𝐵𝐶 ) → 𝐹 : 𝐴1-1𝐶 )