| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funssres | ⊢ ( ( Fun  𝐹  ∧  𝐺  ⊆  𝐹 )  →  ( 𝐹  ↾  dom  𝐺 )  =  𝐺 ) | 
						
							| 2 |  | funres11 | ⊢ ( Fun  ◡ 𝐹  →  Fun  ◡ ( 𝐹  ↾  dom  𝐺 ) ) | 
						
							| 3 |  | cnveq | ⊢ ( 𝐺  =  ( 𝐹  ↾  dom  𝐺 )  →  ◡ 𝐺  =  ◡ ( 𝐹  ↾  dom  𝐺 ) ) | 
						
							| 4 | 3 | funeqd | ⊢ ( 𝐺  =  ( 𝐹  ↾  dom  𝐺 )  →  ( Fun  ◡ 𝐺  ↔  Fun  ◡ ( 𝐹  ↾  dom  𝐺 ) ) ) | 
						
							| 5 | 2 4 | imbitrrid | ⊢ ( 𝐺  =  ( 𝐹  ↾  dom  𝐺 )  →  ( Fun  ◡ 𝐹  →  Fun  ◡ 𝐺 ) ) | 
						
							| 6 | 5 | eqcoms | ⊢ ( ( 𝐹  ↾  dom  𝐺 )  =  𝐺  →  ( Fun  ◡ 𝐹  →  Fun  ◡ 𝐺 ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( ( Fun  𝐹  ∧  𝐺  ⊆  𝐹 )  →  ( Fun  ◡ 𝐹  →  Fun  ◡ 𝐺 ) ) | 
						
							| 8 | 7 | ex | ⊢ ( Fun  𝐹  →  ( 𝐺  ⊆  𝐹  →  ( Fun  ◡ 𝐹  →  Fun  ◡ 𝐺 ) ) ) | 
						
							| 9 | 8 | com23 | ⊢ ( Fun  𝐹  →  ( Fun  ◡ 𝐹  →  ( 𝐺  ⊆  𝐹  →  Fun  ◡ 𝐺 ) ) ) | 
						
							| 10 | 9 | 3imp | ⊢ ( ( Fun  𝐹  ∧  Fun  ◡ 𝐹  ∧  𝐺  ⊆  𝐹 )  →  Fun  ◡ 𝐺 ) |