| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funssres |
⊢ ( ( Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → ( 𝐹 ↾ dom 𝐺 ) = 𝐺 ) |
| 2 |
|
funres11 |
⊢ ( Fun ◡ 𝐹 → Fun ◡ ( 𝐹 ↾ dom 𝐺 ) ) |
| 3 |
|
cnveq |
⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ◡ 𝐺 = ◡ ( 𝐹 ↾ dom 𝐺 ) ) |
| 4 |
3
|
funeqd |
⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ( Fun ◡ 𝐺 ↔ Fun ◡ ( 𝐹 ↾ dom 𝐺 ) ) ) |
| 5 |
2 4
|
imbitrrid |
⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
| 6 |
5
|
eqcoms |
⊢ ( ( 𝐹 ↾ dom 𝐺 ) = 𝐺 → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
| 7 |
1 6
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
| 8 |
7
|
ex |
⊢ ( Fun 𝐹 → ( 𝐺 ⊆ 𝐹 → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) ) |
| 9 |
8
|
com23 |
⊢ ( Fun 𝐹 → ( Fun ◡ 𝐹 → ( 𝐺 ⊆ 𝐹 → Fun ◡ 𝐺 ) ) ) |
| 10 |
9
|
3imp |
⊢ ( ( Fun 𝐹 ∧ Fun ◡ 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → Fun ◡ 𝐺 ) |