Step |
Hyp |
Ref |
Expression |
1 |
|
funssres |
⊢ ( ( Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → ( 𝐹 ↾ dom 𝐺 ) = 𝐺 ) |
2 |
|
funres11 |
⊢ ( Fun ◡ 𝐹 → Fun ◡ ( 𝐹 ↾ dom 𝐺 ) ) |
3 |
|
cnveq |
⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ◡ 𝐺 = ◡ ( 𝐹 ↾ dom 𝐺 ) ) |
4 |
3
|
funeqd |
⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ( Fun ◡ 𝐺 ↔ Fun ◡ ( 𝐹 ↾ dom 𝐺 ) ) ) |
5 |
2 4
|
syl5ibr |
⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
6 |
5
|
eqcoms |
⊢ ( ( 𝐹 ↾ dom 𝐺 ) = 𝐺 → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
7 |
1 6
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
8 |
7
|
ex |
⊢ ( Fun 𝐹 → ( 𝐺 ⊆ 𝐹 → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) ) |
9 |
8
|
com23 |
⊢ ( Fun 𝐹 → ( Fun ◡ 𝐹 → ( 𝐺 ⊆ 𝐹 → Fun ◡ 𝐺 ) ) ) |
10 |
9
|
3imp |
⊢ ( ( Fun 𝐹 ∧ Fun ◡ 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → Fun ◡ 𝐺 ) |