| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1fn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 ⊆ 𝐶 ) → 𝐹 Fn 𝐴 ) |
| 3 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 ⊆ 𝐶 ) → ran 𝐹 ⊆ 𝐶 ) |
| 4 |
|
df-f |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶 ) ) |
| 5 |
2 3 4
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 ⊆ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 6 |
|
df-f1 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun ◡ 𝐹 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 ⊆ 𝐶 ) → Fun ◡ 𝐹 ) |
| 9 |
|
df-f1 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ Fun ◡ 𝐹 ) ) |
| 10 |
5 8 9
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 ⊆ 𝐶 ) → 𝐹 : 𝐴 –1-1→ 𝐶 ) |