Metamath Proof Explorer


Theorem f1ssr

Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Assertion f1ssr ( ( 𝐹 : 𝐴1-1𝐵 ∧ ran 𝐹𝐶 ) → 𝐹 : 𝐴1-1𝐶 )

Proof

Step Hyp Ref Expression
1 f1fn ( 𝐹 : 𝐴1-1𝐵𝐹 Fn 𝐴 )
2 1 adantr ( ( 𝐹 : 𝐴1-1𝐵 ∧ ran 𝐹𝐶 ) → 𝐹 Fn 𝐴 )
3 simpr ( ( 𝐹 : 𝐴1-1𝐵 ∧ ran 𝐹𝐶 ) → ran 𝐹𝐶 )
4 df-f ( 𝐹 : 𝐴𝐶 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹𝐶 ) )
5 2 3 4 sylanbrc ( ( 𝐹 : 𝐴1-1𝐵 ∧ ran 𝐹𝐶 ) → 𝐹 : 𝐴𝐶 )
6 df-f1 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ Fun 𝐹 ) )
7 6 simprbi ( 𝐹 : 𝐴1-1𝐵 → Fun 𝐹 )
8 7 adantr ( ( 𝐹 : 𝐴1-1𝐵 ∧ ran 𝐹𝐶 ) → Fun 𝐹 )
9 df-f1 ( 𝐹 : 𝐴1-1𝐶 ↔ ( 𝐹 : 𝐴𝐶 ∧ Fun 𝐹 ) )
10 5 8 9 sylanbrc ( ( 𝐹 : 𝐴1-1𝐵 ∧ ran 𝐹𝐶 ) → 𝐹 : 𝐴1-1𝐶 )