Metamath Proof Explorer


Theorem f1veqaeq

Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017)

Ref Expression
Assertion f1veqaeq ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) → 𝐶 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 dff13 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑐𝐴𝑑𝐴 ( ( 𝐹𝑐 ) = ( 𝐹𝑑 ) → 𝑐 = 𝑑 ) ) )
2 fveqeq2 ( 𝑐 = 𝐶 → ( ( 𝐹𝑐 ) = ( 𝐹𝑑 ) ↔ ( 𝐹𝐶 ) = ( 𝐹𝑑 ) ) )
3 eqeq1 ( 𝑐 = 𝐶 → ( 𝑐 = 𝑑𝐶 = 𝑑 ) )
4 2 3 imbi12d ( 𝑐 = 𝐶 → ( ( ( 𝐹𝑐 ) = ( 𝐹𝑑 ) → 𝑐 = 𝑑 ) ↔ ( ( 𝐹𝐶 ) = ( 𝐹𝑑 ) → 𝐶 = 𝑑 ) ) )
5 fveq2 ( 𝑑 = 𝐷 → ( 𝐹𝑑 ) = ( 𝐹𝐷 ) )
6 5 eqeq2d ( 𝑑 = 𝐷 → ( ( 𝐹𝐶 ) = ( 𝐹𝑑 ) ↔ ( 𝐹𝐶 ) = ( 𝐹𝐷 ) ) )
7 eqeq2 ( 𝑑 = 𝐷 → ( 𝐶 = 𝑑𝐶 = 𝐷 ) )
8 6 7 imbi12d ( 𝑑 = 𝐷 → ( ( ( 𝐹𝐶 ) = ( 𝐹𝑑 ) → 𝐶 = 𝑑 ) ↔ ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) → 𝐶 = 𝐷 ) ) )
9 4 8 rspc2v ( ( 𝐶𝐴𝐷𝐴 ) → ( ∀ 𝑐𝐴𝑑𝐴 ( ( 𝐹𝑐 ) = ( 𝐹𝑑 ) → 𝑐 = 𝑑 ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) → 𝐶 = 𝐷 ) ) )
10 9 com12 ( ∀ 𝑐𝐴𝑑𝐴 ( ( 𝐹𝑐 ) = ( 𝐹𝑑 ) → 𝑐 = 𝑑 ) → ( ( 𝐶𝐴𝐷𝐴 ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) → 𝐶 = 𝐷 ) ) )
11 1 10 simplbiim ( 𝐹 : 𝐴1-1𝐵 → ( ( 𝐶𝐴𝐷𝐴 ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) → 𝐶 = 𝐷 ) ) )
12 11 imp ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐹𝐶 ) = ( 𝐹𝐷 ) → 𝐶 = 𝐷 ) )