Metamath Proof Explorer


Theorem f2ndf

Description: The 2nd (second component of an ordered pair) function restricted to a function F is a function from F into the codomain of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion f2ndf ( 𝐹 : 𝐴𝐵 → ( 2nd𝐹 ) : 𝐹𝐵 )

Proof

Step Hyp Ref Expression
1 f2ndres ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵
2 fssxp ( 𝐹 : 𝐴𝐵𝐹 ⊆ ( 𝐴 × 𝐵 ) )
3 fssres ( ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹𝐵 )
4 1 2 3 sylancr ( 𝐹 : 𝐴𝐵 → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹𝐵 )
5 2 resabs1d ( 𝐹 : 𝐴𝐵 → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) = ( 2nd𝐹 ) )
6 5 eqcomd ( 𝐹 : 𝐴𝐵 → ( 2nd𝐹 ) = ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) )
7 6 feq1d ( 𝐹 : 𝐴𝐵 → ( ( 2nd𝐹 ) : 𝐹𝐵 ↔ ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹𝐵 ) )
8 4 7 mpbird ( 𝐹 : 𝐴𝐵 → ( 2nd𝐹 ) : 𝐹𝐵 )