Step |
Hyp |
Ref |
Expression |
1 |
|
f2ndres |
⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 |
2 |
|
fssxp |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
3 |
|
fssres |
⊢ ( ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |
5 |
2
|
resabs1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) = ( 2nd ↾ 𝐹 ) ) |
6 |
5
|
eqcomd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 2nd ↾ 𝐹 ) = ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) ) |
7 |
6
|
feq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ↔ ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) ) |
8 |
4 7
|
mpbird |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |