| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f2ndres |
⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 |
| 2 |
|
fssxp |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
| 3 |
|
fssres |
⊢ ( ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |
| 5 |
2
|
resabs1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) = ( 2nd ↾ 𝐹 ) ) |
| 6 |
5
|
eqcomd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 2nd ↾ 𝐹 ) = ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) ) |
| 7 |
6
|
feq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ↔ ( ( 2nd ↾ ( 𝐴 × 𝐵 ) ) ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) ) |
| 8 |
4 7
|
mpbird |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |