| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑦 ∈ V |
| 2 |
|
vex |
⊢ 𝑧 ∈ V |
| 3 |
1 2
|
op2nda |
⊢ ∪ ran { 〈 𝑦 , 𝑧 〉 } = 𝑧 |
| 4 |
3
|
eleq1i |
⊢ ( ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) |
| 5 |
4
|
biimpri |
⊢ ( 𝑧 ∈ 𝐵 → ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) |
| 7 |
6
|
rgen2 |
⊢ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 |
| 8 |
|
sneq |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → { 𝑥 } = { 〈 𝑦 , 𝑧 〉 } ) |
| 9 |
8
|
rneqd |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ran { 𝑥 } = ran { 〈 𝑦 , 𝑧 〉 } ) |
| 10 |
9
|
unieqd |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ∪ ran { 𝑥 } = ∪ ran { 〈 𝑦 , 𝑧 〉 } ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ∪ ran { 𝑥 } ∈ 𝐵 ↔ ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) ) |
| 12 |
11
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ ran { 𝑥 } ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) |
| 13 |
7 12
|
mpbir |
⊢ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ ran { 𝑥 } ∈ 𝐵 |
| 14 |
|
df-2nd |
⊢ 2nd = ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) |
| 15 |
14
|
reseq1i |
⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) |
| 16 |
|
ssv |
⊢ ( 𝐴 × 𝐵 ) ⊆ V |
| 17 |
|
resmpt |
⊢ ( ( 𝐴 × 𝐵 ) ⊆ V → ( ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ran { 𝑥 } ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ran { 𝑥 } ) |
| 19 |
15 18
|
eqtri |
⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ran { 𝑥 } ) |
| 20 |
19
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ ran { 𝑥 } ∈ 𝐵 ↔ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 ) |
| 21 |
13 20
|
mpbi |
⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 |