| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fabexg.1 | ⊢ 𝐹  =  { 𝑥  ∣  ( 𝑥 : 𝐴 ⟶ 𝐵  ∧  𝜑 ) } | 
						
							| 2 |  | xpexg | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 3 |  | pwexg | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  V  →  𝒫  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 4 |  | fssxp | ⊢ ( 𝑥 : 𝐴 ⟶ 𝐵  →  𝑥  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 5 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↔  𝑥  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 6 | 4 5 | sylibr | ⊢ ( 𝑥 : 𝐴 ⟶ 𝐵  →  𝑥  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 7 | 6 | anim1i | ⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵  ∧  𝜑 )  →  ( 𝑥  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝜑 ) ) | 
						
							| 8 | 7 | ss2abi | ⊢ { 𝑥  ∣  ( 𝑥 : 𝐴 ⟶ 𝐵  ∧  𝜑 ) }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝜑 ) } | 
						
							| 9 | 1 8 | eqsstri | ⊢ 𝐹  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝜑 ) } | 
						
							| 10 |  | ssab2 | ⊢ { 𝑥  ∣  ( 𝑥  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝜑 ) }  ⊆  𝒫  ( 𝐴  ×  𝐵 ) | 
						
							| 11 | 9 10 | sstri | ⊢ 𝐹  ⊆  𝒫  ( 𝐴  ×  𝐵 ) | 
						
							| 12 |  | ssexg | ⊢ ( ( 𝐹  ⊆  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝒫  ( 𝐴  ×  𝐵 )  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 13 | 11 12 | mpan | ⊢ ( 𝒫  ( 𝐴  ×  𝐵 )  ∈  V  →  𝐹  ∈  V ) | 
						
							| 14 | 2 3 13 | 3syl | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  𝐹  ∈  V ) |