Metamath Proof Explorer


Theorem fac1

Description: The factorial of 1. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion fac1 ( ! ‘ 1 ) = 1

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 facnn ( 1 ∈ ℕ → ( ! ‘ 1 ) = ( seq 1 ( · , I ) ‘ 1 ) )
3 1 2 ax-mp ( ! ‘ 1 ) = ( seq 1 ( · , I ) ‘ 1 )
4 1z 1 ∈ ℤ
5 seq1 ( 1 ∈ ℤ → ( seq 1 ( · , I ) ‘ 1 ) = ( I ‘ 1 ) )
6 4 5 ax-mp ( seq 1 ( · , I ) ‘ 1 ) = ( I ‘ 1 )
7 fvi ( 1 ∈ ℕ → ( I ‘ 1 ) = 1 )
8 1 7 ax-mp ( I ‘ 1 ) = 1
9 3 6 8 3eqtri ( ! ‘ 1 ) = 1