Metamath Proof Explorer


Theorem fac2

Description: The factorial of 2. (Contributed by NM, 17-Mar-2005)

Ref Expression
Assertion fac2 ( ! ‘ 2 ) = 2

Proof

Step Hyp Ref Expression
1 df-2 2 = ( 1 + 1 )
2 1 fveq2i ( ! ‘ 2 ) = ( ! ‘ ( 1 + 1 ) )
3 1nn0 1 ∈ ℕ0
4 facp1 ( 1 ∈ ℕ0 → ( ! ‘ ( 1 + 1 ) ) = ( ( ! ‘ 1 ) · ( 1 + 1 ) ) )
5 3 4 ax-mp ( ! ‘ ( 1 + 1 ) ) = ( ( ! ‘ 1 ) · ( 1 + 1 ) )
6 fac1 ( ! ‘ 1 ) = 1
7 1p1e2 ( 1 + 1 ) = 2
8 6 7 oveq12i ( ( ! ‘ 1 ) · ( 1 + 1 ) ) = ( 1 · 2 )
9 2cn 2 ∈ ℂ
10 9 mulid2i ( 1 · 2 ) = 2
11 8 10 eqtri ( ( ! ‘ 1 ) · ( 1 + 1 ) ) = 2
12 5 11 eqtri ( ! ‘ ( 1 + 1 ) ) = 2
13 2 12 eqtri ( ! ‘ 2 ) = 2