Step |
Hyp |
Ref |
Expression |
1 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
2 |
1
|
fveq2i |
⊢ ( ! ‘ 3 ) = ( ! ‘ ( 2 + 1 ) ) |
3 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
4 |
|
facp1 |
⊢ ( 2 ∈ ℕ0 → ( ! ‘ ( 2 + 1 ) ) = ( ( ! ‘ 2 ) · ( 2 + 1 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ! ‘ ( 2 + 1 ) ) = ( ( ! ‘ 2 ) · ( 2 + 1 ) ) |
6 |
|
fac2 |
⊢ ( ! ‘ 2 ) = 2 |
7 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
8 |
6 7
|
oveq12i |
⊢ ( ( ! ‘ 2 ) · ( 2 + 1 ) ) = ( 2 · 3 ) |
9 |
|
2cn |
⊢ 2 ∈ ℂ |
10 |
|
3cn |
⊢ 3 ∈ ℂ |
11 |
9 10
|
mulcomi |
⊢ ( 2 · 3 ) = ( 3 · 2 ) |
12 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
13 |
8 11 12
|
3eqtri |
⊢ ( ( ! ‘ 2 ) · ( 2 + 1 ) ) = 6 |
14 |
2 5 13
|
3eqtri |
⊢ ( ! ‘ 3 ) = 6 |