Metamath Proof Explorer


Theorem fac4

Description: The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion fac4 ( ! ‘ 4 ) = 2 4

Proof

Step Hyp Ref Expression
1 3nn0 3 ∈ ℕ0
2 facp1 ( 3 ∈ ℕ0 → ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) )
3 1 2 ax-mp ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) )
4 3p1e4 ( 3 + 1 ) = 4
5 4 fveq2i ( ! ‘ ( 3 + 1 ) ) = ( ! ‘ 4 )
6 fac3 ( ! ‘ 3 ) = 6
7 6 4 oveq12i ( ( ! ‘ 3 ) · ( 3 + 1 ) ) = ( 6 · 4 )
8 6t4e24 ( 6 · 4 ) = 2 4
9 7 8 eqtri ( ( ! ‘ 3 ) · ( 3 + 1 ) ) = 2 4
10 3 5 9 3eqtr3i ( ! ‘ 4 ) = 2 4