| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0readdcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  +  𝑁 )  ∈  ℝ ) | 
						
							| 2 | 1 | rehalfcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑀  +  𝑁 )  /  2 )  ∈  ℝ ) | 
						
							| 3 |  | flle | ⊢ ( ( ( 𝑀  +  𝑁 )  /  2 )  ∈  ℝ  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  ( ( 𝑀  +  𝑁 )  /  2 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  ( ( 𝑀  +  𝑁 )  /  2 ) ) | 
						
							| 5 |  | reflcl | ⊢ ( ( ( 𝑀  +  𝑁 )  /  2 )  ∈  ℝ  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℝ ) | 
						
							| 6 | 2 5 | syl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℝ ) | 
						
							| 7 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ∈  ℝ ) | 
						
							| 9 |  | letr | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℝ  ∧  ( ( 𝑀  +  𝑁 )  /  2 )  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  ( ( 𝑀  +  𝑁 )  /  2 )  ∧  ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑀 )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑀 ) ) | 
						
							| 10 | 6 2 8 9 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  ( ( 𝑀  +  𝑁 )  /  2 )  ∧  ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑀 )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑀 ) ) | 
						
							| 11 | 4 10 | mpand | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑀  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑀 ) ) | 
						
							| 12 |  | nn0addcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | nn0ge0d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 14 |  | halfnneg2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ℝ  →  ( 0  ≤  ( 𝑀  +  𝑁 )  ↔  0  ≤  ( ( 𝑀  +  𝑁 )  /  2 ) ) ) | 
						
							| 15 | 1 14 | syl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 0  ≤  ( 𝑀  +  𝑁 )  ↔  0  ≤  ( ( 𝑀  +  𝑁 )  /  2 ) ) ) | 
						
							| 16 | 13 15 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  ≤  ( ( 𝑀  +  𝑁 )  /  2 ) ) | 
						
							| 17 |  | flge0nn0 | ⊢ ( ( ( ( 𝑀  +  𝑁 )  /  2 )  ∈  ℝ  ∧  0  ≤  ( ( 𝑀  +  𝑁 )  /  2 ) )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℕ0 ) | 
						
							| 18 | 2 16 17 | syl2anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℕ0 ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 20 |  | facwordi | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑀 )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑀 ) ) | 
						
							| 21 | 20 | 3exp | ⊢ ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑀  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑀 ) ) ) ) | 
						
							| 22 | 18 19 21 | sylc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑀  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑀 ) ) ) | 
						
							| 23 |  | faccl | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 24 | 23 | nncnd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 25 | 24 | mulridd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ! ‘ 𝑀 )  ·  1 )  =  ( ! ‘ 𝑀 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ! ‘ 𝑀 )  ·  1 )  =  ( ! ‘ 𝑀 ) ) | 
						
							| 27 |  | faccl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnred | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 30 | 23 | nnred | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 31 | 23 | nnnn0d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℕ0 ) | 
						
							| 32 | 31 | nn0ge0d | ⊢ ( 𝑀  ∈  ℕ0  →  0  ≤  ( ! ‘ 𝑀 ) ) | 
						
							| 33 | 30 32 | jca | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ! ‘ 𝑀 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑀 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ! ‘ 𝑀 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑀 ) ) ) | 
						
							| 35 | 27 | nnge1d | ⊢ ( 𝑁  ∈  ℕ0  →  1  ≤  ( ! ‘ 𝑁 ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  1  ≤  ( ! ‘ 𝑁 ) ) | 
						
							| 37 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 38 |  | lemul2a | ⊢ ( ( ( 1  ∈  ℝ  ∧  ( ! ‘ 𝑁 )  ∈  ℝ  ∧  ( ( ! ‘ 𝑀 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑀 ) ) )  ∧  1  ≤  ( ! ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑀 )  ·  1 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 39 | 37 38 | mp3anl1 | ⊢ ( ( ( ( ! ‘ 𝑁 )  ∈  ℝ  ∧  ( ( ! ‘ 𝑀 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑀 ) ) )  ∧  1  ≤  ( ! ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑀 )  ·  1 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 40 | 29 34 36 39 | syl21anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ! ‘ 𝑀 )  ·  1 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 41 | 26 40 | eqbrtrrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ 𝑀 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 42 | 18 | faccld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ∈  ℕ ) | 
						
							| 43 | 42 | nnred | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ∈  ℝ ) | 
						
							| 44 | 30 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 45 |  | remulcl | ⊢ ( ( ( ! ‘ 𝑀 )  ∈  ℝ  ∧  ( ! ‘ 𝑁 )  ∈  ℝ )  →  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 46 | 30 28 45 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 47 |  | letr | ⊢ ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ∈  ℝ  ∧  ( ! ‘ 𝑀 )  ∈  ℝ  ∧  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) )  ∈  ℝ )  →  ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑀 )  ∧  ( ! ‘ 𝑀 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 48 | 43 44 46 47 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑀 )  ∧  ( ! ‘ 𝑀 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 49 | 41 48 | mpan2d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑀 )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 50 | 11 22 49 | 3syld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑀  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 51 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 53 |  | letr | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℝ  ∧  ( ( 𝑀  +  𝑁 )  /  2 )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  ( ( 𝑀  +  𝑁 )  /  2 )  ∧  ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑁 )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑁 ) ) | 
						
							| 54 | 6 2 52 53 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  ( ( 𝑀  +  𝑁 )  /  2 )  ∧  ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑁 )  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑁 ) ) | 
						
							| 55 | 4 54 | mpand | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑁  →  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑁 ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 57 |  | facwordi | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑁 )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑁 ) ) | 
						
							| 58 | 57 | 3exp | ⊢ ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ∈  ℕ0  →  ( 𝑁  ∈  ℕ0  →  ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑁  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 59 | 18 56 58 | sylc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) )  ≤  𝑁  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑁 ) ) ) | 
						
							| 60 | 27 | nncnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 61 | 60 | mullidd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  ·  ( ! ‘ 𝑁 ) )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 1  ·  ( ! ‘ 𝑁 ) )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 63 | 27 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 64 | 63 | nn0ge0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  ( ! ‘ 𝑁 ) ) | 
						
							| 65 | 28 64 | jca | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ! ‘ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑁 ) ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ! ‘ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑁 ) ) ) | 
						
							| 67 | 23 | nnge1d | ⊢ ( 𝑀  ∈  ℕ0  →  1  ≤  ( ! ‘ 𝑀 ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  1  ≤  ( ! ‘ 𝑀 ) ) | 
						
							| 69 |  | lemul1a | ⊢ ( ( ( 1  ∈  ℝ  ∧  ( ! ‘ 𝑀 )  ∈  ℝ  ∧  ( ( ! ‘ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑁 ) ) )  ∧  1  ≤  ( ! ‘ 𝑀 ) )  →  ( 1  ·  ( ! ‘ 𝑁 ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 70 | 37 69 | mp3anl1 | ⊢ ( ( ( ( ! ‘ 𝑀 )  ∈  ℝ  ∧  ( ( ! ‘ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( ! ‘ 𝑁 ) ) )  ∧  1  ≤  ( ! ‘ 𝑀 ) )  →  ( 1  ·  ( ! ‘ 𝑁 ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 71 | 44 66 68 70 | syl21anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 1  ·  ( ! ‘ 𝑁 ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 72 | 62 71 | eqbrtrrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ 𝑁 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 73 |  | letr | ⊢ ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ∈  ℝ  ∧  ( ! ‘ 𝑁 )  ∈  ℝ  ∧  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) )  ∈  ℝ )  →  ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑁 )  ∧  ( ! ‘ 𝑁 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 74 | 43 29 46 73 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑁 )  ∧  ( ! ‘ 𝑁 )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 75 | 72 74 | mpan2d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ! ‘ 𝑁 )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 76 | 55 59 75 | 3syld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑁  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 77 |  | avgle | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑀  ∨  ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑁 ) ) | 
						
							| 78 | 7 51 77 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑀  ∨  ( ( 𝑀  +  𝑁 )  /  2 )  ≤  𝑁 ) ) | 
						
							| 79 | 50 76 78 | mpjaod | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ ( ⌊ ‘ ( ( 𝑀  +  𝑁 )  /  2 ) ) )  ≤  ( ( ! ‘ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) |