| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
⊢ ( 𝑗 = 0 → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ 0 ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( ! ‘ 𝑗 ) = ( ! ‘ 0 ) ) |
| 3 |
2
|
oveq1d |
⊢ ( 𝑗 = 0 → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ 0 ) / 𝑁 ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑗 = 0 → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) |
| 5 |
1 4
|
imbi12d |
⊢ ( 𝑗 = 0 → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ 0 → ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 → ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 7 |
|
breq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ 𝑘 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ 𝑘 ) / 𝑁 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) |
| 11 |
7 10
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 13 |
|
breq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ ( 𝑘 + 1 ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 17 |
13 16
|
imbi12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 19 |
|
breq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑁 ≤ 𝑗 ↔ 𝑁 ≤ 𝑀 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑗 = 𝑀 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑀 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ! ‘ 𝑗 ) / 𝑁 ) = ( ( ! ‘ 𝑀 ) / 𝑁 ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ↔ ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) |
| 23 |
19 22
|
imbi12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ↔ ( 𝑁 ≤ 𝑀 → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑗 → ( ( ! ‘ 𝑗 ) / 𝑁 ) ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑀 → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 25 |
|
nnnle0 |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 ≤ 0 ) |
| 26 |
25
|
pm2.21d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 → ( ( ! ‘ 0 ) / 𝑁 ) ∈ ℕ ) ) |
| 27 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 28 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 29 |
28
|
nn0red |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
| 30 |
|
leloe |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) ↔ ( 𝑁 < ( 𝑘 + 1 ) ∨ 𝑁 = ( 𝑘 + 1 ) ) ) ) |
| 31 |
27 29 30
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑘 + 1 ) ↔ ( 𝑁 < ( 𝑘 + 1 ) ∨ 𝑁 = ( 𝑘 + 1 ) ) ) ) |
| 32 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 33 |
|
nn0leltp1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑘 ↔ 𝑁 < ( 𝑘 + 1 ) ) ) |
| 34 |
32 33
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑘 ↔ 𝑁 < ( 𝑘 + 1 ) ) ) |
| 35 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
| 36 |
|
nnmulcl |
⊢ ( ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 37 |
35 36
|
sylan2 |
⊢ ( ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 38 |
37
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) ) |
| 40 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 41 |
40
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 42 |
28
|
nn0cnd |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
| 43 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 44 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 45 |
43 44
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 47 |
|
div23 |
⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℂ ∧ ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ) |
| 48 |
41 42 46 47
|
syl2an23an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ) |
| 49 |
48
|
eleq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ↔ ( ( ( ! ‘ 𝑘 ) / 𝑁 ) · ( 𝑘 + 1 ) ) ∈ ℕ ) ) |
| 50 |
39 49
|
sylibrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 51 |
50
|
imim2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ 𝑘 → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 52 |
51
|
com23 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑘 → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 53 |
34 52
|
sylbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 < ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 54 |
41
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 55 |
43
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 56 |
44
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ≠ 0 ) |
| 57 |
54 55 56
|
divcan4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) = ( ! ‘ 𝑘 ) ) |
| 58 |
40
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 59 |
57 58
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) ∈ ℕ ) |
| 60 |
|
oveq2 |
⊢ ( 𝑁 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑘 ) · 𝑁 ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 61 |
60
|
oveq1d |
⊢ ( 𝑁 = ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑁 = ( 𝑘 + 1 ) → ( ( ( ( ! ‘ 𝑘 ) · 𝑁 ) / 𝑁 ) ∈ ℕ ↔ ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 63 |
59 62
|
syl5ibcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 = ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 64 |
63
|
a1dd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 = ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 65 |
53 64
|
jaod |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 < ( 𝑘 + 1 ) ∨ 𝑁 = ( 𝑘 + 1 ) ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 66 |
31 65
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) |
| 67 |
66
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ0 → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 68 |
67
|
com34 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 69 |
68
|
com12 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 70 |
69
|
imp4d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ∧ 𝑁 ≤ ( 𝑘 + 1 ) ) ) → ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 71 |
|
facp1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 72 |
71
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) = ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ) |
| 73 |
72
|
eleq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ↔ ( ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 74 |
70 73
|
sylibrd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ∧ 𝑁 ≤ ( 𝑘 + 1 ) ) ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) |
| 75 |
74
|
exp4d |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 76 |
75
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑘 → ( ( ! ‘ 𝑘 ) / 𝑁 ) ∈ ℕ ) ) → ( 𝑁 ∈ ℕ → ( 𝑁 ≤ ( 𝑘 + 1 ) → ( ( ! ‘ ( 𝑘 + 1 ) ) / 𝑁 ) ∈ ℕ ) ) ) ) |
| 77 |
6 12 18 24 26 76
|
nn0ind |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑀 → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) ) ) |
| 78 |
77
|
3imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) |