| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑗 = 0 → ( 𝑗 + 1 ) = ( 0 + 1 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑗 = 0 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 0 + 1 ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( ! ‘ 𝑗 ) = ( ! ‘ 0 ) ) |
| 5 |
4
|
oveq2d |
⊢ ( 𝑗 = 0 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) |
| 6 |
3 5
|
breq12d |
⊢ ( 𝑗 = 0 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 𝑘 + 1 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) |
| 12 |
9 11
|
breq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑘 + 1 ) + 1 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 18 |
15 17
|
breq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 + 1 ) = ( 𝑁 + 1 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 𝑁 + 1 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑗 = 𝑁 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑁 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 24 |
21 23
|
breq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) ) |
| 26 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 27 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
| 28 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 29 |
28
|
biimpi |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 30 |
26 27 29
|
leexp2ad |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 1 ) ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 31 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 32 |
31
|
oveq2i |
⊢ ( 𝑀 ↑ ( 0 + 1 ) ) = ( 𝑀 ↑ 1 ) |
| 33 |
32
|
a1i |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) = ( 𝑀 ↑ 1 ) ) |
| 34 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 35 |
34
|
oveq2i |
⊢ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) = ( ( 𝑀 ↑ 𝑀 ) · 1 ) |
| 36 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 37 |
26 36
|
reexpcld |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
| 38 |
37
|
recnd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) |
| 39 |
38
|
mulridd |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ 𝑀 ) · 1 ) = ( 𝑀 ↑ 𝑀 ) ) |
| 40 |
35 39
|
eqtrid |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) = ( 𝑀 ↑ 𝑀 ) ) |
| 41 |
30 33 40
|
3brtr4d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) |
| 42 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 43 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 44 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 45 |
43 44
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 46 |
42 45
|
reexpcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 47 |
36
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ℕ0 ) |
| 48 |
42 47
|
reexpcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
| 49 |
43
|
faccld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 50 |
49
|
nnred |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 51 |
48 50
|
remulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 52 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 53 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
| 54 |
43 52 53
|
3syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 55 |
|
nngt0 |
⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) |
| 56 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 < 𝑀 ) |
| 57 |
|
0re |
⊢ 0 ∈ ℝ |
| 58 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) |
| 59 |
57 58
|
mpan |
⊢ ( 𝑀 ∈ ℝ → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) |
| 60 |
42 56 59
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 ≤ 𝑀 ) |
| 61 |
42 45 60
|
expge0d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 ≤ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ) |
| 62 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) |
| 63 |
|
simprr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ≤ ( 𝑘 + 1 ) ) |
| 64 |
46 51 42 54 61 60 62 63
|
lemul12ad |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ≤ ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 65 |
64
|
anandis |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ≤ ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 66 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
| 67 |
|
expp1 |
⊢ ( ( 𝑀 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
| 68 |
66 44 67
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
| 70 |
|
facp1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 72 |
71
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 73 |
38
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) |
| 74 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 75 |
74
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 77 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 78 |
|
peano2cn |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 + 1 ) ∈ ℂ ) |
| 79 |
77 78
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 81 |
73 76 80
|
mulassd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 82 |
72 81
|
eqtr4d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 84 |
65 69 83
|
3brtr4d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 85 |
84
|
exp32 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 86 |
85
|
com23 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 87 |
|
nn0ltp1le |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
| 88 |
44 36 87
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
| 89 |
|
peano2nn0 |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
| 90 |
44 89
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
| 91 |
|
reexpcl |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
| 92 |
26 90 91
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
| 93 |
92
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
| 94 |
37
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
| 95 |
44
|
faccld |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 96 |
95
|
nnred |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 97 |
|
remulcl |
⊢ ( ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 98 |
37 96 97
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 99 |
98
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 100 |
26
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 101 |
27
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 1 ≤ 𝑀 ) |
| 102 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) |
| 103 |
90
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
| 104 |
103
|
nn0zd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ∈ ℤ ) |
| 105 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 106 |
105
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 107 |
|
eluz |
⊢ ( ( ( ( 𝑘 + 1 ) + 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
| 108 |
104 106 107
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
| 109 |
102 108
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) |
| 110 |
100 101 109
|
leexp2ad |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 111 |
37 96
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ) |
| 112 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
| 113 |
|
id |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℕ0 ) |
| 114 |
|
nn0ge0 |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ 𝑀 ) |
| 115 |
112 113 114
|
expge0d |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 116 |
36 115
|
syl |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 117 |
95
|
nnge1d |
⊢ ( 𝑘 ∈ ℕ0 → 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 118 |
116 117
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 0 ≤ ( 𝑀 ↑ 𝑀 ) ∧ 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 119 |
|
lemulge11 |
⊢ ( ( ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝑀 ↑ 𝑀 ) ∧ 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 120 |
111 118 119
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 121 |
120
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 122 |
93 94 99 110 121
|
letrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 123 |
122
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 124 |
88 123
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 125 |
124
|
a1dd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 126 |
52 53
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
| 127 |
|
lelttric |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ∨ ( 𝑘 + 1 ) < 𝑀 ) ) |
| 128 |
26 126 127
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ∨ ( 𝑘 + 1 ) < 𝑀 ) ) |
| 129 |
86 125 128
|
mpjaod |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 130 |
129
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 131 |
130
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) → ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 132 |
7 13 19 25 41 131
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 133 |
132
|
impcom |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 134 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 135 |
134
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ0 ) |
| 136 |
135
|
nn0ge0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑁 ) ) |
| 137 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 138 |
137
|
0expd |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ ( 𝑁 + 1 ) ) = 0 ) |
| 139 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
| 140 |
139
|
oveq1i |
⊢ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) = ( 1 · ( ! ‘ 𝑁 ) ) |
| 141 |
134
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 142 |
141
|
mullidd |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
| 143 |
140 142
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
| 144 |
136 138 143
|
3brtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) |
| 145 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑁 + 1 ) ) = ( 0 ↑ ( 𝑁 + 1 ) ) ) |
| 146 |
|
oveq12 |
⊢ ( ( 𝑀 = 0 ∧ 𝑀 = 0 ) → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) |
| 147 |
146
|
anidms |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) |
| 148 |
147
|
oveq1d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) = ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) |
| 149 |
145 148
|
breq12d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ↔ ( 0 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 150 |
144 149
|
imbitrrid |
⊢ ( 𝑀 = 0 → ( 𝑁 ∈ ℕ0 → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 151 |
150
|
imp |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 152 |
133 151
|
jaoian |
⊢ ( ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 153 |
1 152
|
sylanb |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |