Step |
Hyp |
Ref |
Expression |
1 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
2 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
3 |
1 2
|
eqtr4i |
⊢ ( 2 ↑ 2 ) = ( 2 · 2 ) |
4 |
3
|
oveq2i |
⊢ ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 · 2 ) ) |
5 |
|
2cn |
⊢ 2 ∈ ℂ |
6 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
7 |
5 6
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 · 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
9 |
4 8
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
10 |
|
expcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
11 |
5 10
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
12 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
13 |
|
divmuldiv |
⊢ ( ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 2 ∈ ℂ ) ∧ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) ) → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
14 |
12 12 13
|
mpanr12 |
⊢ ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
15 |
11 5 14
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
16 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
17 |
16
|
oveq2i |
⊢ ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) / 2 ) · 1 ) |
18 |
11
|
halfcld |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) / 2 ) ∈ ℂ ) |
19 |
18
|
mulid1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) / 2 ) · 1 ) = ( ( 2 ↑ 𝑁 ) / 2 ) ) |
20 |
17 19
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( 2 ↑ 𝑁 ) / 2 ) ) |
21 |
9 15 20
|
3eqtr2rd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) / 2 ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ) |
22 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
23 |
|
faclbnd |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) |
24 |
22 23
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) |
25 |
|
2re |
⊢ 2 ∈ ℝ |
26 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
27 |
|
reexpcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) |
28 |
25 26 27
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) |
29 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
30 |
29
|
nnred |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℝ ) |
31 |
|
4re |
⊢ 4 ∈ ℝ |
32 |
1 31
|
eqeltri |
⊢ ( 2 ↑ 2 ) ∈ ℝ |
33 |
|
4pos |
⊢ 0 < 4 |
34 |
33 1
|
breqtrri |
⊢ 0 < ( 2 ↑ 2 ) |
35 |
32 34
|
pm3.2i |
⊢ ( ( 2 ↑ 2 ) ∈ ℝ ∧ 0 < ( 2 ↑ 2 ) ) |
36 |
|
ledivmul |
⊢ ( ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( 2 ↑ 2 ) ∈ ℝ ∧ 0 < ( 2 ↑ 2 ) ) ) → ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) ) |
37 |
35 36
|
mp3an3 |
⊢ ( ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ) → ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) ) |
38 |
28 30 37
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) ) |
39 |
24 38
|
mpbird |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ) |
40 |
21 39
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) / 2 ) ≤ ( ! ‘ 𝑁 ) ) |