| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 2 |  | recnz | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  <  𝑁 )  →  ¬  ( 1  /  𝑁 )  ∈  ℤ ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 )  →  ¬  ( 1  /  𝑁 )  ∈  ℤ ) | 
						
							| 4 | 3 | ad2ant2lr | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ¬  ( 1  /  𝑁 )  ∈  ℤ ) | 
						
							| 5 |  | facdiv | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ  ∧  𝑁  ≤  𝑀 )  →  ( ( ! ‘ 𝑀 )  /  𝑁 )  ∈  ℕ ) | 
						
							| 6 | 5 | 3expa | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  𝑁  ≤  𝑀 )  →  ( ( ! ‘ 𝑀 )  /  𝑁 )  ∈  ℕ ) | 
						
							| 7 | 6 | nnzd | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  𝑁  ≤  𝑀 )  →  ( ( ! ‘ 𝑀 )  /  𝑁 )  ∈  ℤ ) | 
						
							| 8 | 7 | adantrl | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ! ‘ 𝑀 )  /  𝑁 )  ∈  ℤ ) | 
						
							| 9 |  | zsubcl | ⊢ ( ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  ∈  ℤ  ∧  ( ( ! ‘ 𝑀 )  /  𝑁 )  ∈  ℤ )  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  −  ( ( ! ‘ 𝑀 )  /  𝑁 ) )  ∈  ℤ ) | 
						
							| 10 | 9 | ex | ⊢ ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  ∈  ℤ  →  ( ( ( ! ‘ 𝑀 )  /  𝑁 )  ∈  ℤ  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  −  ( ( ! ‘ 𝑀 )  /  𝑁 ) )  ∈  ℤ ) ) | 
						
							| 11 | 8 10 | syl5com | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  ∈  ℤ  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  −  ( ( ! ‘ 𝑀 )  /  𝑁 ) )  ∈  ℤ ) ) | 
						
							| 12 |  | faccl | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 13 | 12 | nncnd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 14 |  | peano2cn | ⊢ ( ( ! ‘ 𝑀 )  ∈  ℂ  →  ( ( ! ‘ 𝑀 )  +  1 )  ∈  ℂ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ! ‘ 𝑀 )  +  1 )  ∈  ℂ ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ! ‘ 𝑀 )  +  1 )  ∈  ℂ ) | 
						
							| 17 | 13 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ! ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 18 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 19 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 20 | 18 19 | jca | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈  ℂ  ∧  𝑁  ≠  0 ) ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( 𝑁  ∈  ℂ  ∧  𝑁  ≠  0 ) ) | 
						
							| 22 |  | divsubdir | ⊢ ( ( ( ( ! ‘ 𝑀 )  +  1 )  ∈  ℂ  ∧  ( ! ‘ 𝑀 )  ∈  ℂ  ∧  ( 𝑁  ∈  ℂ  ∧  𝑁  ≠  0 ) )  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  −  ( ! ‘ 𝑀 ) )  /  𝑁 )  =  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  −  ( ( ! ‘ 𝑀 )  /  𝑁 ) ) ) | 
						
							| 23 | 16 17 21 22 | syl3anc | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  −  ( ! ‘ 𝑀 ) )  /  𝑁 )  =  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  −  ( ( ! ‘ 𝑀 )  /  𝑁 ) ) ) | 
						
							| 24 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 25 |  | pncan2 | ⊢ ( ( ( ! ‘ 𝑀 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ! ‘ 𝑀 )  +  1 )  −  ( ! ‘ 𝑀 ) )  =  1 ) | 
						
							| 26 | 13 24 25 | sylancl | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ( ! ‘ 𝑀 )  +  1 )  −  ( ! ‘ 𝑀 ) )  =  1 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  −  ( ! ‘ 𝑀 ) )  /  𝑁 )  =  ( 1  /  𝑁 ) ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  −  ( ! ‘ 𝑀 ) )  /  𝑁 )  =  ( 1  /  𝑁 ) ) | 
						
							| 29 | 23 28 | eqtr3d | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  −  ( ( ! ‘ 𝑀 )  /  𝑁 ) )  =  ( 1  /  𝑁 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  −  ( ( ! ‘ 𝑀 )  /  𝑁 ) )  ∈  ℤ  ↔  ( 1  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 31 | 11 30 | sylibd | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ( ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  ∈  ℤ  →  ( 1  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 32 | 4 31 | mtod | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  ∧  ( 1  <  𝑁  ∧  𝑁  ≤  𝑀 ) )  →  ¬  ( ( ( ! ‘ 𝑀 )  +  1 )  /  𝑁 )  ∈  ℤ ) |