Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
3 |
|
facnn |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) = ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) = ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) ) |
5 |
|
ovex |
⊢ ( 𝑁 + 1 ) ∈ V |
6 |
|
fvi |
⊢ ( ( 𝑁 + 1 ) ∈ V → ( I ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( I ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) |
8 |
7
|
oveq2i |
⊢ ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( I ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( 𝑁 + 1 ) ) |
9 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( I ‘ ( 𝑁 + 1 ) ) ) ) |
10 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
11 |
9 10
|
eleq2s |
⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( I ‘ ( 𝑁 + 1 ) ) ) ) |
12 |
|
facnn |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) = ( seq 1 ( · , I ) ‘ 𝑁 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
14 |
8 11 13
|
3eqtr4a |
⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
15 |
4 14
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
16 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
17 |
16
|
fveq2i |
⊢ ( ! ‘ ( 0 + 1 ) ) = ( ! ‘ 1 ) |
18 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
19 |
17 18
|
eqtri |
⊢ ( ! ‘ ( 0 + 1 ) ) = 1 |
20 |
|
fvoveq1 |
⊢ ( 𝑁 = 0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ! ‘ ( 0 + 1 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = ( ! ‘ 0 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = ( 0 + 1 ) ) |
23 |
21 22
|
oveq12d |
⊢ ( 𝑁 = 0 → ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) = ( ( ! ‘ 0 ) · ( 0 + 1 ) ) ) |
24 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
25 |
24 16
|
oveq12i |
⊢ ( ( ! ‘ 0 ) · ( 0 + 1 ) ) = ( 1 · 1 ) |
26 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
27 |
25 26
|
eqtri |
⊢ ( ( ! ‘ 0 ) · ( 0 + 1 ) ) = 1 |
28 |
23 27
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) = 1 ) |
29 |
19 20 28
|
3eqtr4a |
⊢ ( 𝑁 = 0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
30 |
15 29
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
31 |
1 30
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |