| Step | Hyp | Ref | Expression | 
						
							| 1 |  | facth.1 | ⊢ 𝐺  =  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) | 
						
							| 2 |  | eqid | ⊢ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) | 
						
							| 3 | 1 2 | plyrem | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  =  ( ℂ  ×  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  =  ( ℂ  ×  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 6 | 5 | sneqd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  { ( 𝐹 ‘ 𝐴 ) }  =  { 0 } ) | 
						
							| 7 | 6 | xpeq2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( ℂ  ×  { ( 𝐹 ‘ 𝐴 ) } )  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 9 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ℂ  ∈  V ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 12 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 14 | 1 | plyremlem | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝐺 )  =  1  ∧  ( ◡ 𝐺  “  { 0 } )  =  { 𝐴 } ) ) | 
						
							| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝐺 )  =  1  ∧  ( ◡ 𝐺  “  { 0 } )  =  { 𝐴 } ) ) | 
						
							| 16 | 15 | simp1d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 17 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 18 | 17 11 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 19 | 15 | simp2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( deg ‘ 𝐺 )  =  1 ) | 
						
							| 20 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  1  ≠  0 ) | 
						
							| 22 | 19 21 | eqnetrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( deg ‘ 𝐺 )  ≠  0 ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝐺  =  0𝑝  →  ( deg ‘ 𝐺 )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 24 |  | dgr0 | ⊢ ( deg ‘ 0𝑝 )  =  0 | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( 𝐺  =  0𝑝  →  ( deg ‘ 𝐺 )  =  0 ) | 
						
							| 26 | 25 | necon3i | ⊢ ( ( deg ‘ 𝐺 )  ≠  0  →  𝐺  ≠  0𝑝 ) | 
						
							| 27 | 22 26 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  𝐺  ≠  0𝑝 ) | 
						
							| 28 |  | quotcl2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ≠  0𝑝 )  →  ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 29 | 18 16 27 28 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 30 |  | plymulcl | ⊢ ( ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ ) )  →  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 31 | 16 29 30 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 32 |  | plyf | ⊢ ( ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  ∈  ( Poly ‘ ℂ )  →  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) : ℂ ⟶ ℂ ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) : ℂ ⟶ ℂ ) | 
						
							| 34 |  | ofsubeq0 | ⊢ ( ( ℂ  ∈  V  ∧  𝐹 : ℂ ⟶ ℂ  ∧  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) : ℂ ⟶ ℂ )  →  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  =  ( ℂ  ×  { 0 } )  ↔  𝐹  =  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) ) | 
						
							| 35 | 10 13 33 34 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  =  ( ℂ  ×  { 0 } )  ↔  𝐹  =  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) ) | 
						
							| 36 | 8 35 | mpbid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐴 )  =  0 )  →  𝐹  =  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) |