Step |
Hyp |
Ref |
Expression |
1 |
|
facth.1 |
⊢ 𝐺 = ( Xp ∘f − ( ℂ × { 𝐴 } ) ) |
2 |
|
eqid |
⊢ ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) |
3 |
1 2
|
plyrem |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = ( ℂ × { ( 𝐹 ‘ 𝐴 ) } ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = ( ℂ × { ( 𝐹 ‘ 𝐴 ) } ) ) |
5 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
6 |
5
|
sneqd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → { ( 𝐹 ‘ 𝐴 ) } = { 0 } ) |
7 |
6
|
xpeq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( ℂ × { ( 𝐹 ‘ 𝐴 ) } ) = ( ℂ × { 0 } ) ) |
8 |
4 7
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = ( ℂ × { 0 } ) ) |
9 |
|
cnex |
⊢ ℂ ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ℂ ∈ V ) |
11 |
|
simp1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
12 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐹 : ℂ ⟶ ℂ ) |
14 |
1
|
plyremlem |
⊢ ( 𝐴 ∈ ℂ → ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝐺 ) = 1 ∧ ( ◡ 𝐺 “ { 0 } ) = { 𝐴 } ) ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝐺 ) = 1 ∧ ( ◡ 𝐺 “ { 0 } ) = { 𝐴 } ) ) |
16 |
15
|
simp1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
17 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
18 |
17 11
|
sselid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
19 |
15
|
simp2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( deg ‘ 𝐺 ) = 1 ) |
20 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
21 |
20
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 1 ≠ 0 ) |
22 |
19 21
|
eqnetrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( deg ‘ 𝐺 ) ≠ 0 ) |
23 |
|
fveq2 |
⊢ ( 𝐺 = 0𝑝 → ( deg ‘ 𝐺 ) = ( deg ‘ 0𝑝 ) ) |
24 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
25 |
23 24
|
eqtrdi |
⊢ ( 𝐺 = 0𝑝 → ( deg ‘ 𝐺 ) = 0 ) |
26 |
25
|
necon3i |
⊢ ( ( deg ‘ 𝐺 ) ≠ 0 → 𝐺 ≠ 0𝑝 ) |
27 |
22 26
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐺 ≠ 0𝑝 ) |
28 |
|
quotcl2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
29 |
18 16 27 28
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
30 |
|
plymulcl |
⊢ ( ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) → ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
31 |
16 29 30
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
32 |
|
plyf |
⊢ ( ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) → ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) : ℂ ⟶ ℂ ) |
33 |
31 32
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) : ℂ ⟶ ℂ ) |
34 |
|
ofsubeq0 |
⊢ ( ( ℂ ∈ V ∧ 𝐹 : ℂ ⟶ ℂ ∧ ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) : ℂ ⟶ ℂ ) → ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = ( ℂ × { 0 } ) ↔ 𝐹 = ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ) |
35 |
10 13 33 34
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) = ( ℂ × { 0 } ) ↔ 𝐹 = ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ) |
36 |
8 35
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐹 = ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) |