Step |
Hyp |
Ref |
Expression |
1 |
|
ply1rem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1rem.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
ply1rem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
ply1rem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
ply1rem.m |
⊢ − = ( -g ‘ 𝑃 ) |
6 |
|
ply1rem.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
7 |
|
ply1rem.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) |
8 |
|
ply1rem.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
9 |
|
ply1rem.1 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
10 |
|
ply1rem.2 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
11 |
|
ply1rem.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐾 ) |
12 |
|
ply1rem.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
13 |
|
facth1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
14 |
|
facth1.d |
⊢ ∥ = ( ∥r ‘ 𝑃 ) |
15 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
16 |
9 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
17 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 17 18 13
|
ply1remlem |
⊢ ( 𝜑 → ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) = 1 ∧ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { 𝑁 } ) ) |
20 |
19
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) |
21 |
|
eqid |
⊢ ( Unic1p ‘ 𝑅 ) = ( Unic1p ‘ 𝑅 ) |
22 |
21 17
|
mon1puc1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
23 |
16 20 22
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
25 |
|
eqid |
⊢ ( rem1p ‘ 𝑅 ) = ( rem1p ‘ 𝑅 ) |
26 |
1 14 2 21 24 25
|
dvdsr1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐺 ∥ 𝐹 ↔ ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 0g ‘ 𝑃 ) ) ) |
27 |
16 12 23 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ∥ 𝐹 ↔ ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 0g ‘ 𝑃 ) ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 25
|
ply1rem |
⊢ ( 𝜑 → ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
29 |
1 6 13 24
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
30 |
16 29
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
31 |
30
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐴 ‘ 0 ) ) |
32 |
28 31
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 0g ‘ 𝑃 ) ↔ ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) = ( 𝐴 ‘ 0 ) ) ) |
33 |
1 6 3 2
|
ply1sclf1 |
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 –1-1→ 𝐵 ) |
34 |
16 33
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐾 –1-1→ 𝐵 ) |
35 |
8 1 3 2 10 11 12
|
fveval1fvcl |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ∈ 𝐾 ) |
36 |
3 13
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
37 |
16 36
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
38 |
|
f1fveq |
⊢ ( ( 𝐴 : 𝐾 –1-1→ 𝐵 ∧ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ∈ 𝐾 ∧ 0 ∈ 𝐾 ) ) → ( ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) = ( 𝐴 ‘ 0 ) ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = 0 ) ) |
39 |
34 35 37 38
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) = ( 𝐴 ‘ 0 ) ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = 0 ) ) |
40 |
27 32 39
|
3bitrd |
⊢ ( 𝜑 → ( 𝐺 ∥ 𝐹 ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = 0 ) ) |