Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( ! ‘ 𝑚 ) = ( ! ‘ 0 ) ) |
2 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝑚 = 0 → ( ! ‘ 𝑚 ) = 1 ) |
4 |
|
id |
⊢ ( 𝑚 = 0 → 𝑚 = 0 ) |
5 |
4 4
|
oveq12d |
⊢ ( 𝑚 = 0 → ( 𝑚 ↑ 𝑚 ) = ( 0 ↑ 0 ) ) |
6 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑚 = 0 → ( 𝑚 ↑ 𝑚 ) = 1 ) |
8 |
3 7
|
breq12d |
⊢ ( 𝑚 = 0 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ 1 ≤ 1 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ! ‘ 𝑚 ) = ( ! ‘ 𝑘 ) ) |
10 |
|
id |
⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) |
11 |
10 10
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 ↑ 𝑚 ) = ( 𝑘 ↑ 𝑘 ) ) |
12 |
9 11
|
breq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ! ‘ 𝑚 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
14 |
|
id |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → 𝑚 = ( 𝑘 + 1 ) ) |
15 |
14 14
|
oveq12d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑚 ↑ 𝑚 ) = ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) |
16 |
13 15
|
breq12d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( ! ‘ 𝑚 ) = ( ! ‘ 𝑁 ) ) |
18 |
|
id |
⊢ ( 𝑚 = 𝑁 → 𝑚 = 𝑁 ) |
19 |
18 18
|
oveq12d |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 ↑ 𝑚 ) = ( 𝑁 ↑ 𝑁 ) ) |
20 |
17 19
|
breq12d |
⊢ ( 𝑚 = 𝑁 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ 𝑁 ) ≤ ( 𝑁 ↑ 𝑁 ) ) ) |
21 |
|
1le1 |
⊢ 1 ≤ 1 |
22 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
23 |
22
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
24 |
23
|
nnred |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
25 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
26 |
25
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
27 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ∈ ℕ0 ) |
28 |
26 27
|
reexpcld |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 ↑ 𝑘 ) ∈ ℝ ) |
29 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
30 |
29
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
31 |
30
|
nnred |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
32 |
31 27
|
reexpcld |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( 𝑘 + 1 ) ↑ 𝑘 ) ∈ ℝ ) |
33 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) |
34 |
|
nn0ge0 |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) |
35 |
34
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 0 ≤ 𝑘 ) |
36 |
26
|
lep1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
37 |
|
leexp1a |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 ↑ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
38 |
26 31 27 35 36 37
|
syl32anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 ↑ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
39 |
24 28 32 33 38
|
letrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
40 |
30
|
nngt0d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 0 < ( 𝑘 + 1 ) ) |
41 |
|
lemul1 |
⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ↔ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
42 |
24 32 31 40 41
|
syl112anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ↔ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
43 |
39 42
|
mpbid |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
44 |
|
facp1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
46 |
30
|
nncnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
47 |
46 27
|
expp1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
48 |
43 45 47
|
3brtr4d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) |
49 |
48
|
ex |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) → ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) ) |
50 |
8 12 16 20 21 49
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ≤ ( 𝑁 ↑ 𝑁 ) ) |