| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑗  =  0  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  0 ) ) | 
						
							| 2 | 1 | anbi2d | ⊢ ( 𝑗  =  0  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  ↔  ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  0 ) ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( ! ‘ 𝑗 )  =  ( ! ‘ 0 ) ) | 
						
							| 4 | 3 | breq2d | ⊢ ( 𝑗  =  0  →  ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 )  ↔  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 0 ) ) ) | 
						
							| 5 | 2 4 | imbi12d | ⊢ ( 𝑗  =  0  →  ( ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 ) )  ↔  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  0 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 0 ) ) ) ) | 
						
							| 6 |  | breq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  𝑘 ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  ↔  ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑘 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( ! ‘ 𝑗 )  =  ( ! ‘ 𝑘 ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 )  ↔  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 ) )  ↔  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑘 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) ) ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  ↔  ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ! ‘ 𝑗 )  =  ( ! ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 14 | 13 | breq2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 )  ↔  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 15 | 12 14 | imbi12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 ) )  ↔  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  ( 𝑘  +  1 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 17 | 16 | anbi2d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  ↔  ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑁 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑗  =  𝑁  →  ( ! ‘ 𝑗 )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 19 | 18 | breq2d | ⊢ ( 𝑗  =  𝑁  →  ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 )  ↔  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑁 ) ) ) | 
						
							| 20 | 17 19 | imbi12d | ⊢ ( 𝑗  =  𝑁  →  ( ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑗 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑗 ) )  ↔  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑁 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 21 |  | nn0le0eq0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  0  ↔  𝑀  =  0 ) ) | 
						
							| 22 | 21 | biimpa | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  0 )  →  𝑀  =  0 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  0 )  →  ( ! ‘ 𝑀 )  =  ( ! ‘ 0 ) ) | 
						
							| 24 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 25 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 26 | 24 25 | eqeltri | ⊢ ( ! ‘ 0 )  ∈  ℝ | 
						
							| 27 | 26 | leidi | ⊢ ( ! ‘ 0 )  ≤  ( ! ‘ 0 ) | 
						
							| 28 | 23 27 | eqbrtrdi | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  0 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 0 ) ) | 
						
							| 29 |  | impexp | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑘 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  ↔  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) ) ) ) | 
						
							| 30 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 31 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 32 |  | peano2re | ⊢ ( 𝑘  ∈  ℝ  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 34 |  | leloe | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  ↔  ( 𝑀  <  ( 𝑘  +  1 )  ∨  𝑀  =  ( 𝑘  +  1 ) ) ) ) | 
						
							| 35 | 30 33 34 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  ↔  ( 𝑀  <  ( 𝑘  +  1 )  ∨  𝑀  =  ( 𝑘  +  1 ) ) ) ) | 
						
							| 36 |  | nn0leltp1 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ≤  𝑘  ↔  𝑀  <  ( 𝑘  +  1 ) ) ) | 
						
							| 37 |  | faccl | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 38 | 37 | nnred | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 39 | 37 | nnnn0d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 40 | 39 | nn0ge0d | ⊢ ( 𝑘  ∈  ℕ0  →  0  ≤  ( ! ‘ 𝑘 ) ) | 
						
							| 41 |  | nn0p1nn | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 42 | 41 | nnge1d | ⊢ ( 𝑘  ∈  ℕ0  →  1  ≤  ( 𝑘  +  1 ) ) | 
						
							| 43 | 38 33 40 42 | lemulge11d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ≤  ( ( ! ‘ 𝑘 )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 44 |  | facp1 | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ ( 𝑘  +  1 ) )  =  ( ( ! ‘ 𝑘 )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 45 | 43 44 | breqtrrd | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 47 |  | faccl | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 48 | 47 | nnred | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 50 | 38 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 51 |  | peano2nn0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 52 | 51 | faccld | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℕ ) | 
						
							| 53 | 52 | nnred | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 55 |  | letr | ⊢ ( ( ( ! ‘ 𝑀 )  ∈  ℝ  ∧  ( ! ‘ 𝑘 )  ∈  ℝ  ∧  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  →  ( ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 )  ∧  ( ! ‘ 𝑘 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 56 | 49 50 54 55 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 )  ∧  ( ! ‘ 𝑘 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 57 | 46 56 | mpan2d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 58 | 57 | imim2d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 59 | 58 | com23 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ≤  𝑘  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 60 | 36 59 | sylbird | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  <  ( 𝑘  +  1 )  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑀  =  ( 𝑘  +  1 )  →  ( ! ‘ 𝑀 )  =  ( ! ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 62 | 48 | leidd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑀 ) ) | 
						
							| 63 |  | breq2 | ⊢ ( ( ! ‘ 𝑀 )  =  ( ! ‘ ( 𝑘  +  1 ) )  →  ( ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑀 )  ↔  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 64 | 62 63 | syl5ibcom | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ! ‘ 𝑀 )  =  ( ! ‘ ( 𝑘  +  1 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 65 | 61 64 | syl5 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  =  ( 𝑘  +  1 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  =  ( 𝑘  +  1 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 67 | 66 | a1dd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  =  ( 𝑘  +  1 )  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 68 | 60 67 | jaod | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀  <  ( 𝑘  +  1 )  ∨  𝑀  =  ( 𝑘  +  1 ) )  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 69 | 35 68 | sylbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑘  ∈  ℕ0  →  ( 𝑀  ≤  ( 𝑘  +  1 )  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 71 | 70 | com13 | ⊢ ( 𝑀  ≤  ( 𝑘  +  1 )  →  ( 𝑘  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 72 | 71 | com4l | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  ( ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 73 | 72 | a2d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) ) )  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  ( 𝑘  +  1 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 74 | 73 | imp4a | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝑘  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) ) )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  ( 𝑘  +  1 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 75 | 29 74 | biimtrid | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑘 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑘 ) )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  ( 𝑘  +  1 ) )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 76 | 5 10 15 20 28 75 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑁 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑁 ) ) ) | 
						
							| 77 | 76 | 3impib | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  ≤  𝑁 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑁 ) ) | 
						
							| 78 | 77 | 3com12 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑀  ≤  𝑁 )  →  ( ! ‘ 𝑀 )  ≤  ( ! ‘ 𝑁 ) ) |