Metamath Proof Explorer


Theorem falantru

Description: A /\ identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion falantru ( ( ⊥ ∧ ⊤ ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 fal ¬ ⊥
2 1 intnanr ¬ ( ⊥ ∧ ⊤ )
3 2 bifal ( ( ⊥ ∧ ⊤ ) ↔ ⊥ )