Metamath Proof Explorer


Theorem falbifal

Description: A <-> identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion falbifal ( ( ⊥ ↔ ⊥ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 biid ( ⊥ ↔ ⊥ )
2 1 bitru ( ( ⊥ ↔ ⊥ ) ↔ ⊤ )