Step |
Hyp |
Ref |
Expression |
1 |
|
risefallfaccllem.1 |
⊢ 𝑆 ⊆ ℂ |
2 |
|
risefallfaccllem.2 |
⊢ 1 ∈ 𝑆 |
3 |
|
risefallfaccllem.3 |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
4 |
|
fallfaccllem.4 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 − 𝑘 ) ∈ 𝑆 ) |
5 |
1
|
sseli |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ ) |
6 |
|
fallfacval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) ) |
8 |
1
|
a1i |
⊢ ( 𝐴 ∈ 𝑆 → 𝑆 ⊆ ℂ ) |
9 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
10 |
|
fzfid |
⊢ ( 𝐴 ∈ 𝑆 → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
11 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
12 |
11 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 − 𝑘 ) ∈ 𝑆 ) |
13 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝑆 → 1 ∈ 𝑆 ) |
14 |
8 9 10 12 13
|
fprodcllem |
⊢ ( 𝐴 ∈ 𝑆 → ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) ∈ 𝑆 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) ∈ 𝑆 ) |
16 |
7 15
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) ∈ 𝑆 ) |