| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 2 |
|
fallfacval4 |
⊢ ( 𝑁 ∈ ( 0 ... 𝑁 ) → ( 𝑁 FallFac 𝑁 ) = ( ( ! ‘ 𝑁 ) / ( ! ‘ ( 𝑁 − 𝑁 ) ) ) ) |
| 3 |
1 2
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 FallFac 𝑁 ) = ( ( ! ‘ 𝑁 ) / ( ! ‘ ( 𝑁 − 𝑁 ) ) ) ) |
| 4 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
| 5 |
4
|
subidd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 𝑁 ) = 0 ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 − 𝑁 ) ) = ( ! ‘ 0 ) ) |
| 7 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 − 𝑁 ) ) = 1 ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / ( ! ‘ ( 𝑁 − 𝑁 ) ) ) = ( ( ! ‘ 𝑁 ) / 1 ) ) |
| 10 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 11 |
10
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 12 |
11
|
div1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / 1 ) = ( ! ‘ 𝑁 ) ) |
| 13 |
3 9 12
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 FallFac 𝑁 ) = ( ! ‘ 𝑁 ) ) |