Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
3 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℂ ) |
4 |
2 3
|
pncand |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
6 |
5
|
prodeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) = ∏ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 − 𝑘 ) ) |
7 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
8 |
7
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
10 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
11 |
10
|
nn0cnd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
12 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) |
14 |
13
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) |
15 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐴 − 𝑘 ) = ( 𝐴 − 𝑁 ) ) |
16 |
9 14 15
|
fprodm1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 − 𝑘 ) = ( ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) · ( 𝐴 − 𝑁 ) ) ) |
17 |
6 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) = ( ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) · ( 𝐴 − 𝑁 ) ) ) |
18 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
19 |
|
fallfacval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 𝐴 FallFac ( 𝑁 + 1 ) ) = ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac ( 𝑁 + 1 ) ) = ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) ) |
21 |
|
fallfacval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 FallFac 𝑁 ) · ( 𝐴 − 𝑁 ) ) = ( ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) · ( 𝐴 − 𝑁 ) ) ) |
23 |
17 20 22
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac ( 𝑁 + 1 ) ) = ( ( 𝐴 FallFac 𝑁 ) · ( 𝐴 − 𝑁 ) ) ) |