| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  −  𝑘 )  =  ( 𝐴  −  𝑘 ) ) | 
						
							| 2 | 1 | prodeq2sdv | ⊢ ( 𝑥  =  𝐴  →  ∏ 𝑘  ∈  ( 0 ... ( 𝑛  −  1 ) ) ( 𝑥  −  𝑘 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝑛  −  1 ) ) ( 𝐴  −  𝑘 ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  −  1 )  =  ( 𝑁  −  1 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑛  =  𝑁  →  ( 0 ... ( 𝑛  −  1 ) )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 5 | 4 | prodeq1d | ⊢ ( 𝑛  =  𝑁  →  ∏ 𝑘  ∈  ( 0 ... ( 𝑛  −  1 ) ) ( 𝐴  −  𝑘 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  −  𝑘 ) ) | 
						
							| 6 |  | df-fallfac | ⊢  FallFac   =  ( 𝑥  ∈  ℂ ,  𝑛  ∈  ℕ0  ↦  ∏ 𝑘  ∈  ( 0 ... ( 𝑛  −  1 ) ) ( 𝑥  −  𝑘 ) ) | 
						
							| 7 |  | prodex | ⊢ ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  −  𝑘 )  ∈  V | 
						
							| 8 | 2 5 6 7 | ovmpo | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  FallFac  𝑁 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  −  𝑘 ) ) |