| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fallfacval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  FallFac  𝑁 )  =  ∏ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  −  𝑛 ) ) | 
						
							| 2 |  | 1zzd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  1  ∈  ℤ ) | 
						
							| 3 |  | 0zd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  0  ∈  ℤ ) | 
						
							| 4 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 10 | 9 | nn0cnd | ⊢ ( 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 11 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( 𝐴  −  𝑛 )  ∈  ℂ ) | 
						
							| 12 | 8 10 11 | syl2an | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 𝐴  −  𝑛 )  ∈  ℂ ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  −  1 )  →  ( 𝐴  −  𝑛 )  =  ( 𝐴  −  ( 𝑘  −  1 ) ) ) | 
						
							| 14 | 2 3 7 12 13 | fprodshft | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ∏ 𝑛  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  −  𝑛 )  =  ∏ 𝑘  ∈  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) ) ( 𝐴  −  ( 𝑘  −  1 ) ) ) | 
						
							| 15 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  +  1 )  =  1 ) | 
						
							| 17 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 18 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 19 | 17 18 | npcand | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 21 | 16 20 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 22 | 21 | prodeq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ∏ 𝑘  ∈  ( ( 0  +  1 ) ... ( ( 𝑁  −  1 )  +  1 ) ) ( 𝐴  −  ( 𝑘  −  1 ) )  =  ∏ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐴  −  ( 𝑘  −  1 ) ) ) | 
						
							| 23 | 1 14 22 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  FallFac  𝑁 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐴  −  ( 𝑘  −  1 ) ) ) |