Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
2 |
1
|
2timesd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑁 ) ) = ( - 1 ↑ ( 𝑁 + 𝑁 ) ) ) |
4 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
5 |
|
m1expeven |
⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑁 ) ) = 1 ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑁 ) ) = 1 ) |
7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
8 |
|
expadd |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
9 |
7 8
|
mp3an1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
10 |
9
|
anidms |
⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
11 |
3 6 10
|
3eqtr3rd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
13 |
|
negneg |
⊢ ( 𝑋 ∈ ℂ → - - 𝑋 = 𝑋 ) |
14 |
13
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → - - 𝑋 = 𝑋 ) |
15 |
14
|
oveq1d |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - - 𝑋 FallFac 𝑁 ) = ( 𝑋 FallFac 𝑁 ) ) |
16 |
12 15
|
oveq12d |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( - - 𝑋 FallFac 𝑁 ) ) = ( 1 · ( 𝑋 FallFac 𝑁 ) ) ) |
17 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
18 |
7 17
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
19 |
18
|
adantl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
20 |
|
negcl |
⊢ ( 𝑋 ∈ ℂ → - 𝑋 ∈ ℂ ) |
21 |
20
|
negcld |
⊢ ( 𝑋 ∈ ℂ → - - 𝑋 ∈ ℂ ) |
22 |
|
fallfaccl |
⊢ ( ( - - 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - - 𝑋 FallFac 𝑁 ) ∈ ℂ ) |
23 |
21 22
|
sylan |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - - 𝑋 FallFac 𝑁 ) ∈ ℂ ) |
24 |
19 19 23
|
mulassd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( - - 𝑋 FallFac 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) ) |
25 |
|
fallfaccl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 FallFac 𝑁 ) ∈ ℂ ) |
26 |
25
|
mulid2d |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 1 · ( 𝑋 FallFac 𝑁 ) ) = ( 𝑋 FallFac 𝑁 ) ) |
27 |
16 24 26
|
3eqtr3rd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 FallFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) ) |
28 |
|
risefallfac |
⊢ ( ( - 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑋 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) |
29 |
20 28
|
sylan |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑋 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 RiseFac 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) ) |
31 |
27 30
|
eqtr4d |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 FallFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 RiseFac 𝑁 ) ) ) |