| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 2 | 1 | 2timesd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( - 1 ↑ ( 2  ·  𝑁 ) )  =  ( - 1 ↑ ( 𝑁  +  𝑁 ) ) ) | 
						
							| 4 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | m1expeven | ⊢ ( 𝑁  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑁 ) )  =  1 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( - 1 ↑ ( 2  ·  𝑁 ) )  =  1 ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 |  | expadd | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑁  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 9 | 7 8 | mp3an1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 10 | 9 | anidms | ⊢ ( 𝑁  ∈  ℕ0  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 11 | 3 6 10 | 3eqtr3rd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 13 |  | negneg | ⊢ ( 𝑋  ∈  ℂ  →  - - 𝑋  =  𝑋 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  - - 𝑋  =  𝑋 ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - - 𝑋  FallFac  𝑁 )  =  ( 𝑋  FallFac  𝑁 ) ) | 
						
							| 16 | 12 15 | oveq12d | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  ·  ( - - 𝑋  FallFac  𝑁 ) )  =  ( 1  ·  ( 𝑋  FallFac  𝑁 ) ) ) | 
						
							| 17 |  | expcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - 1 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 18 | 7 17 | mpan | ⊢ ( 𝑁  ∈  ℕ0  →  ( - 1 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - 1 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 20 |  | negcl | ⊢ ( 𝑋  ∈  ℂ  →  - 𝑋  ∈  ℂ ) | 
						
							| 21 | 20 | negcld | ⊢ ( 𝑋  ∈  ℂ  →  - - 𝑋  ∈  ℂ ) | 
						
							| 22 |  | fallfaccl | ⊢ ( ( - - 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - - 𝑋  FallFac  𝑁 )  ∈  ℂ ) | 
						
							| 23 | 21 22 | sylan | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - - 𝑋  FallFac  𝑁 )  ∈  ℂ ) | 
						
							| 24 | 19 19 23 | mulassd | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  ·  ( - - 𝑋  FallFac  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ( - - 𝑋  FallFac  𝑁 ) ) ) ) | 
						
							| 25 |  | fallfaccl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑋  FallFac  𝑁 )  ∈  ℂ ) | 
						
							| 26 | 25 | mullidd | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 1  ·  ( 𝑋  FallFac  𝑁 ) )  =  ( 𝑋  FallFac  𝑁 ) ) | 
						
							| 27 | 16 24 26 | 3eqtr3rd | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑋  FallFac  𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ( - - 𝑋  FallFac  𝑁 ) ) ) ) | 
						
							| 28 |  | risefallfac | ⊢ ( ( - 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - 𝑋  RiseFac  𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - - 𝑋  FallFac  𝑁 ) ) ) | 
						
							| 29 | 20 28 | sylan | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - 𝑋  RiseFac  𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - - 𝑋  FallFac  𝑁 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 𝑋  RiseFac  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( ( - 1 ↑ 𝑁 )  ·  ( - - 𝑋  FallFac  𝑁 ) ) ) ) | 
						
							| 31 | 27 30 | eqtr4d | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑋  FallFac  𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 𝑋  RiseFac  𝑁 ) ) ) |