Metamath Proof Explorer


Theorem falnanfal

Description: A -/\ identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion falnanfal ( ( ⊥ ⊼ ⊥ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 nannot ( ¬ ⊥ ↔ ( ⊥ ⊼ ⊥ ) )
2 notfal ( ¬ ⊥ ↔ ⊤ )
3 1 2 bitr3i ( ( ⊥ ⊼ ⊥ ) ↔ ⊤ )