Metamath Proof Explorer


Theorem falnantru

Description: A -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion falnantru ( ( ⊥ ⊼ ⊤ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 nancom ( ( ⊥ ⊼ ⊤ ) ↔ ( ⊤ ⊼ ⊥ ) )
2 trunanfal ( ( ⊤ ⊼ ⊥ ) ↔ ⊤ )
3 1 2 bitri ( ( ⊥ ⊼ ⊤ ) ↔ ⊤ )