Metamath Proof Explorer


Theorem falortru

Description: A \/ identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion falortru ( ( ⊥ ∨ ⊤ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ( ⊥ ∨ ⊤ )
3 2 bitru ( ( ⊥ ∨ ⊤ ) ↔ ⊤ )