Metamath Proof Explorer


Theorem falxorfal

Description: A \/_ identity. (Contributed by David A. Wheeler, 9-May-2015)

Ref Expression
Assertion falxorfal ( ( ⊥ ⊻ ⊥ ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 df-xor ( ( ⊥ ⊻ ⊥ ) ↔ ¬ ( ⊥ ↔ ⊥ ) )
2 falbifal ( ( ⊥ ↔ ⊥ ) ↔ ⊤ )
3 1 2 xchbinx ( ( ⊥ ⊻ ⊥ ) ↔ ¬ ⊤ )
4 nottru ( ¬ ⊤ ↔ ⊥ )
5 3 4 bitri ( ( ⊥ ⊻ ⊥ ) ↔ ⊥ )