Metamath Proof Explorer


Theorem falxortru

Description: A \/_ identity. (Contributed by David A. Wheeler, 9-May-2015) (Proof shortened by Wolf Lammen, 10-Jul-2020)

Ref Expression
Assertion falxortru ( ( ⊥ ⊻ ⊤ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 xorcom ( ( ⊥ ⊻ ⊤ ) ↔ ( ⊤ ⊻ ⊥ ) )
2 truxorfal ( ( ⊤ ⊻ ⊥ ) ↔ ⊤ )
3 1 2 bitri ( ( ⊥ ⊻ ⊤ ) ↔ ⊤ )