| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝑦  ∈  ( 𝒫  𝐹  ∩  Fin )  ↔  ( 𝑦  ∈  𝒫  𝐹  ∧  𝑦  ∈  Fin ) ) | 
						
							| 2 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝐹  →  𝑦  ⊆  𝐹 ) | 
						
							| 3 | 2 | anim1i | ⊢ ( ( 𝑦  ∈  𝒫  𝐹  ∧  𝑦  ∈  Fin )  →  ( 𝑦  ⊆  𝐹  ∧  𝑦  ∈  Fin ) ) | 
						
							| 4 | 1 3 | sylbi | ⊢ ( 𝑦  ∈  ( 𝒫  𝐹  ∩  Fin )  →  ( 𝑦  ⊆  𝐹  ∧  𝑦  ∈  Fin ) ) | 
						
							| 5 |  | fbssint | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ⊆  𝐹  ∧  𝑦  ∈  Fin )  →  ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ∩  𝑦 ) | 
						
							| 6 | 5 | 3expb | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  ( 𝑦  ⊆  𝐹  ∧  𝑦  ∈  Fin ) )  →  ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ∩  𝑦 ) | 
						
							| 7 | 4 6 | sylan2 | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  →  ∃ 𝑧  ∈  𝐹 𝑧  ⊆  ∩  𝑦 ) | 
						
							| 8 |  | 0nelfb | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  ∧  𝑧  ∈  𝐹 )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑧  =  ∅  →  ( 𝑧  ∈  𝐹  ↔  ∅  ∈  𝐹 ) ) | 
						
							| 11 | 10 | biimpcd | ⊢ ( 𝑧  ∈  𝐹  →  ( 𝑧  =  ∅  →  ∅  ∈  𝐹 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  ∧  𝑧  ∈  𝐹 )  →  ( 𝑧  =  ∅  →  ∅  ∈  𝐹 ) ) | 
						
							| 13 | 9 12 | mtod | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  ∧  𝑧  ∈  𝐹 )  →  ¬  𝑧  =  ∅ ) | 
						
							| 14 |  | ss0 | ⊢ ( 𝑧  ⊆  ∅  →  𝑧  =  ∅ ) | 
						
							| 15 | 13 14 | nsyl | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  ∧  𝑧  ∈  𝐹 )  →  ¬  𝑧  ⊆  ∅ ) | 
						
							| 16 | 15 | adantrr | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  ∩  𝑦 ) )  →  ¬  𝑧  ⊆  ∅ ) | 
						
							| 17 |  | sseq2 | ⊢ ( ∅  =  ∩  𝑦  →  ( 𝑧  ⊆  ∅  ↔  𝑧  ⊆  ∩  𝑦 ) ) | 
						
							| 18 | 17 | biimprcd | ⊢ ( 𝑧  ⊆  ∩  𝑦  →  ( ∅  =  ∩  𝑦  →  𝑧  ⊆  ∅ ) ) | 
						
							| 19 | 18 | ad2antll | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  ∩  𝑦 ) )  →  ( ∅  =  ∩  𝑦  →  𝑧  ⊆  ∅ ) ) | 
						
							| 20 | 16 19 | mtod | ⊢ ( ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑧  ⊆  ∩  𝑦 ) )  →  ¬  ∅  =  ∩  𝑦 ) | 
						
							| 21 | 7 20 | rexlimddv | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) )  →  ¬  ∅  =  ∩  𝑦 ) | 
						
							| 22 | 21 | nrexdv | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ¬  ∃ 𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) ∅  =  ∩  𝑦 ) | 
						
							| 23 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 24 |  | elfi | ⊢ ( ( ∅  ∈  V  ∧  𝐹  ∈  ( fBas ‘ 𝑋 ) )  →  ( ∅  ∈  ( fi ‘ 𝐹 )  ↔  ∃ 𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) ∅  =  ∩  𝑦 ) ) | 
						
							| 25 | 23 24 | mpan | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( ∅  ∈  ( fi ‘ 𝐹 )  ↔  ∃ 𝑦  ∈  ( 𝒫  𝐹  ∩  Fin ) ∅  =  ∩  𝑦 ) ) | 
						
							| 26 | 22 25 | mtbird | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ¬  ∅  ∈  ( fi ‘ 𝐹 ) ) |