Metamath Proof Explorer


Theorem fbasrn

Description: Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis fbasrn.c 𝐶 = ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) )
Assertion fbasrn ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 fbasrn.c 𝐶 = ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) )
2 simpl3 ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝐵 ) → 𝑌𝑉 )
3 simpl2 ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝐵 ) → 𝐹 : 𝑋𝑌 )
4 fimass ( 𝐹 : 𝑋𝑌 → ( 𝐹𝑥 ) ⊆ 𝑌 )
5 3 4 syl ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝐵 ) → ( 𝐹𝑥 ) ⊆ 𝑌 )
6 2 5 sselpwd ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝐵 ) → ( 𝐹𝑥 ) ∈ 𝒫 𝑌 )
7 6 fmpttd ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) : 𝐵 ⟶ 𝒫 𝑌 )
8 7 frnd ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ⊆ 𝒫 𝑌 )
9 1 8 eqsstrid ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → 𝐶 ⊆ 𝒫 𝑌 )
10 1 a1i ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → 𝐶 = ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) )
11 ffun ( 𝐹 : 𝑋𝑌 → Fun 𝐹 )
12 11 3ad2ant2 ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → Fun 𝐹 )
13 funimaexg ( ( Fun 𝐹𝑥𝐵 ) → ( 𝐹𝑥 ) ∈ V )
14 13 ralrimiva ( Fun 𝐹 → ∀ 𝑥𝐵 ( 𝐹𝑥 ) ∈ V )
15 dmmptg ( ∀ 𝑥𝐵 ( 𝐹𝑥 ) ∈ V → dom ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) = 𝐵 )
16 12 14 15 3syl ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → dom ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) = 𝐵 )
17 fbasne0 ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ≠ ∅ )
18 17 3ad2ant1 ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → 𝐵 ≠ ∅ )
19 16 18 eqnetrd ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → dom ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ≠ ∅ )
20 dm0rn0 ( dom ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) = ∅ ↔ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) = ∅ )
21 20 necon3bii ( dom ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ≠ ∅ ↔ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ≠ ∅ )
22 19 21 sylib ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ≠ ∅ )
23 10 22 eqnetrd ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → 𝐶 ≠ ∅ )
24 fbelss ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥𝐵 ) → 𝑥𝑋 )
25 24 ex ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥𝐵𝑥𝑋 ) )
26 25 3ad2ant1 ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝑥𝐵𝑥𝑋 ) )
27 0nelfb ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐵 )
28 eleq1 ( 𝑥 = ∅ → ( 𝑥𝐵 ↔ ∅ ∈ 𝐵 ) )
29 28 notbid ( 𝑥 = ∅ → ( ¬ 𝑥𝐵 ↔ ¬ ∅ ∈ 𝐵 ) )
30 27 29 syl5ibrcom ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 = ∅ → ¬ 𝑥𝐵 ) )
31 30 con2d ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥𝐵 → ¬ 𝑥 = ∅ ) )
32 31 3ad2ant1 ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝑥𝐵 → ¬ 𝑥 = ∅ ) )
33 26 32 jcad ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝑥𝐵 → ( 𝑥𝑋 ∧ ¬ 𝑥 = ∅ ) ) )
34 fdm ( 𝐹 : 𝑋𝑌 → dom 𝐹 = 𝑋 )
35 34 3ad2ant2 ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → dom 𝐹 = 𝑋 )
36 35 sseq2d ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝑥 ⊆ dom 𝐹𝑥𝑋 ) )
37 36 biimpar ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝑋 ) → 𝑥 ⊆ dom 𝐹 )
38 sseqin2 ( 𝑥 ⊆ dom 𝐹 ↔ ( dom 𝐹𝑥 ) = 𝑥 )
39 37 38 sylib ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝑋 ) → ( dom 𝐹𝑥 ) = 𝑥 )
40 39 eqeq1d ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝑋 ) → ( ( dom 𝐹𝑥 ) = ∅ ↔ 𝑥 = ∅ ) )
41 40 biimpd ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝑋 ) → ( ( dom 𝐹𝑥 ) = ∅ → 𝑥 = ∅ ) )
42 41 con3d ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ 𝑥𝑋 ) → ( ¬ 𝑥 = ∅ → ¬ ( dom 𝐹𝑥 ) = ∅ ) )
43 42 expimpd ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( ( 𝑥𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ( dom 𝐹𝑥 ) = ∅ ) )
44 eqcom ( ∅ = ( 𝐹𝑥 ) ↔ ( 𝐹𝑥 ) = ∅ )
45 imadisj ( ( 𝐹𝑥 ) = ∅ ↔ ( dom 𝐹𝑥 ) = ∅ )
46 44 45 bitri ( ∅ = ( 𝐹𝑥 ) ↔ ( dom 𝐹𝑥 ) = ∅ )
47 46 notbii ( ¬ ∅ = ( 𝐹𝑥 ) ↔ ¬ ( dom 𝐹𝑥 ) = ∅ )
48 43 47 syl6ibr ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( ( 𝑥𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ∅ = ( 𝐹𝑥 ) ) )
49 33 48 syld ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝑥𝐵 → ¬ ∅ = ( 𝐹𝑥 ) ) )
50 49 ralrimiv ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ∀ 𝑥𝐵 ¬ ∅ = ( 𝐹𝑥 ) )
51 1 eleq2i ( ∅ ∈ 𝐶 ↔ ∅ ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) )
52 0ex ∅ ∈ V
53 eqid ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) = ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) )
54 53 elrnmpt ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐵 ∅ = ( 𝐹𝑥 ) ) )
55 52 54 ax-mp ( ∅ ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐵 ∅ = ( 𝐹𝑥 ) )
56 51 55 bitri ( ∅ ∈ 𝐶 ↔ ∃ 𝑥𝐵 ∅ = ( 𝐹𝑥 ) )
57 56 notbii ( ¬ ∅ ∈ 𝐶 ↔ ¬ ∃ 𝑥𝐵 ∅ = ( 𝐹𝑥 ) )
58 df-nel ( ∅ ∉ 𝐶 ↔ ¬ ∅ ∈ 𝐶 )
59 ralnex ( ∀ 𝑥𝐵 ¬ ∅ = ( 𝐹𝑥 ) ↔ ¬ ∃ 𝑥𝐵 ∅ = ( 𝐹𝑥 ) )
60 57 58 59 3bitr4i ( ∅ ∉ 𝐶 ↔ ∀ 𝑥𝐵 ¬ ∅ = ( 𝐹𝑥 ) )
61 50 60 sylibr ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ∅ ∉ 𝐶 )
62 1 eleq2i ( 𝑟𝐶𝑟 ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) )
63 imaeq2 ( 𝑥 = 𝑢 → ( 𝐹𝑥 ) = ( 𝐹𝑢 ) )
64 63 cbvmptv ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) = ( 𝑢𝐵 ↦ ( 𝐹𝑢 ) )
65 64 elrnmpt ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑢𝐵 𝑟 = ( 𝐹𝑢 ) ) )
66 65 elv ( 𝑟 ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑢𝐵 𝑟 = ( 𝐹𝑢 ) )
67 62 66 bitri ( 𝑟𝐶 ↔ ∃ 𝑢𝐵 𝑟 = ( 𝐹𝑢 ) )
68 1 eleq2i ( 𝑠𝐶𝑠 ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) )
69 imaeq2 ( 𝑥 = 𝑣 → ( 𝐹𝑥 ) = ( 𝐹𝑣 ) )
70 69 cbvmptv ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) = ( 𝑣𝐵 ↦ ( 𝐹𝑣 ) )
71 70 elrnmpt ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑣𝐵 𝑠 = ( 𝐹𝑣 ) ) )
72 71 elv ( 𝑠 ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑣𝐵 𝑠 = ( 𝐹𝑣 ) )
73 68 72 bitri ( 𝑠𝐶 ↔ ∃ 𝑣𝐵 𝑠 = ( 𝐹𝑣 ) )
74 67 73 anbi12i ( ( 𝑟𝐶𝑠𝐶 ) ↔ ( ∃ 𝑢𝐵 𝑟 = ( 𝐹𝑢 ) ∧ ∃ 𝑣𝐵 𝑠 = ( 𝐹𝑣 ) ) )
75 reeanv ( ∃ 𝑢𝐵𝑣𝐵 ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ↔ ( ∃ 𝑢𝐵 𝑟 = ( 𝐹𝑢 ) ∧ ∃ 𝑣𝐵 𝑠 = ( 𝐹𝑣 ) ) )
76 74 75 bitr4i ( ( 𝑟𝐶𝑠𝐶 ) ↔ ∃ 𝑢𝐵𝑣𝐵 ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) )
77 fbasssin ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢𝐵𝑣𝐵 ) → ∃ 𝑤𝐵 𝑤 ⊆ ( 𝑢𝑣 ) )
78 77 3expb ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑢𝐵𝑣𝐵 ) ) → ∃ 𝑤𝐵 𝑤 ⊆ ( 𝑢𝑣 ) )
79 78 3ad2antl1 ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑢𝐵𝑣𝐵 ) ) → ∃ 𝑤𝐵 𝑤 ⊆ ( 𝑢𝑣 ) )
80 79 adantrr ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( ( 𝑢𝐵𝑣𝐵 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ∃ 𝑤𝐵 𝑤 ⊆ ( 𝑢𝑣 ) )
81 eqid ( 𝐹𝑤 ) = ( 𝐹𝑤 )
82 imaeq2 ( 𝑥 = 𝑤 → ( 𝐹𝑥 ) = ( 𝐹𝑤 ) )
83 82 rspceeqv ( ( 𝑤𝐵 ∧ ( 𝐹𝑤 ) = ( 𝐹𝑤 ) ) → ∃ 𝑥𝐵 ( 𝐹𝑤 ) = ( 𝐹𝑥 ) )
84 81 83 mpan2 ( 𝑤𝐵 → ∃ 𝑥𝐵 ( 𝐹𝑤 ) = ( 𝐹𝑥 ) )
85 84 ad2antrl ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ∃ 𝑥𝐵 ( 𝐹𝑤 ) = ( 𝐹𝑥 ) )
86 1 eleq2i ( ( 𝐹𝑤 ) ∈ 𝐶 ↔ ( 𝐹𝑤 ) ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) )
87 vex 𝑤 ∈ V
88 87 funimaex ( Fun 𝐹 → ( 𝐹𝑤 ) ∈ V )
89 53 elrnmpt ( ( 𝐹𝑤 ) ∈ V → ( ( 𝐹𝑤 ) ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑤 ) = ( 𝐹𝑥 ) ) )
90 12 88 89 3syl ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( ( 𝐹𝑤 ) ∈ ran ( 𝑥𝐵 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑤 ) = ( 𝐹𝑥 ) ) )
91 86 90 syl5bb ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( ( 𝐹𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥𝐵 ( 𝐹𝑤 ) = ( 𝐹𝑥 ) ) )
92 91 ad2antrr ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ( ( 𝐹𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥𝐵 ( 𝐹𝑤 ) = ( 𝐹𝑥 ) ) )
93 85 92 mpbird ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ( 𝐹𝑤 ) ∈ 𝐶 )
94 imass2 ( 𝑤 ⊆ ( 𝑢𝑣 ) → ( 𝐹𝑤 ) ⊆ ( 𝐹 “ ( 𝑢𝑣 ) ) )
95 94 ad2antll ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ( 𝐹𝑤 ) ⊆ ( 𝐹 “ ( 𝑢𝑣 ) ) )
96 inss1 ( 𝑢𝑣 ) ⊆ 𝑢
97 imass2 ( ( 𝑢𝑣 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝐹𝑢 ) )
98 96 97 ax-mp ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝐹𝑢 )
99 inss2 ( 𝑢𝑣 ) ⊆ 𝑣
100 imass2 ( ( 𝑢𝑣 ) ⊆ 𝑣 → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝐹𝑣 ) )
101 99 100 ax-mp ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝐹𝑣 )
102 98 101 ssini ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) )
103 ineq12 ( ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) → ( 𝑟𝑠 ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) ) )
104 103 ad2antlr ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ( 𝑟𝑠 ) = ( ( 𝐹𝑢 ) ∩ ( 𝐹𝑣 ) ) )
105 102 104 sseqtrrid ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ( 𝐹 “ ( 𝑢𝑣 ) ) ⊆ ( 𝑟𝑠 ) )
106 95 105 sstrd ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ( 𝐹𝑤 ) ⊆ ( 𝑟𝑠 ) )
107 sseq1 ( 𝑧 = ( 𝐹𝑤 ) → ( 𝑧 ⊆ ( 𝑟𝑠 ) ↔ ( 𝐹𝑤 ) ⊆ ( 𝑟𝑠 ) ) )
108 107 rspcev ( ( ( 𝐹𝑤 ) ∈ 𝐶 ∧ ( 𝐹𝑤 ) ⊆ ( 𝑟𝑠 ) ) → ∃ 𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) )
109 93 106 108 syl2anc ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ∃ 𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) )
110 109 adantlrl ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( ( 𝑢𝐵𝑣𝐵 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) ∧ ( 𝑤𝐵𝑤 ⊆ ( 𝑢𝑣 ) ) ) → ∃ 𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) )
111 80 110 rexlimddv ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) ∧ ( ( 𝑢𝐵𝑣𝐵 ) ∧ ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) ) ) → ∃ 𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) )
112 111 exp32 ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( ( 𝑢𝐵𝑣𝐵 ) → ( ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) → ∃ 𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) ) ) )
113 112 rexlimdvv ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( ∃ 𝑢𝐵𝑣𝐵 ( 𝑟 = ( 𝐹𝑢 ) ∧ 𝑠 = ( 𝐹𝑣 ) ) → ∃ 𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) ) )
114 76 113 syl5bi ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( ( 𝑟𝐶𝑠𝐶 ) → ∃ 𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) ) )
115 114 ralrimivv ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ∀ 𝑟𝐶𝑠𝐶𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) )
116 23 61 115 3jca ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟𝐶𝑠𝐶𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) ) )
117 isfbas2 ( 𝑌𝑉 → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟𝐶𝑠𝐶𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) ) ) ) )
118 117 3ad2ant3 ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟𝐶𝑠𝐶𝑧𝐶 𝑧 ⊆ ( 𝑟𝑠 ) ) ) ) )
119 9 116 118 mpbir2and ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌𝑉 ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) )