| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fbasrn.c | 
							⊢ 𝐶  =  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ∈  𝐵 )  →  𝑌  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ∈  𝐵 )  →  𝐹 : 𝑋 ⟶ 𝑌 )  | 
						
						
							| 4 | 
							
								
							 | 
							fimass | 
							⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  ( 𝐹  “  𝑥 )  ⊆  𝑌 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐹  “  𝑥 )  ⊆  𝑌 )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							sselpwd | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐹  “  𝑥 )  ∈  𝒫  𝑌 )  | 
						
						
							| 7 | 
							
								6
							 | 
							fmpttd | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) ) : 𝐵 ⟶ 𝒫  𝑌 )  | 
						
						
							| 8 | 
							
								7
							 | 
							frnd | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ⊆  𝒫  𝑌 )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							eqsstrid | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  𝐶  ⊆  𝒫  𝑌 )  | 
						
						
							| 10 | 
							
								1
							 | 
							a1i | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  𝐶  =  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ffun | 
							⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  Fun  𝐹 )  | 
						
						
							| 12 | 
							
								11
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  Fun  𝐹 )  | 
						
						
							| 13 | 
							
								
							 | 
							funimaexg | 
							⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  𝐵 )  →  ( 𝐹  “  𝑥 )  ∈  V )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							⊢ ( Fun  𝐹  →  ∀ 𝑥  ∈  𝐵 ( 𝐹  “  𝑥 )  ∈  V )  | 
						
						
							| 15 | 
							
								
							 | 
							dmmptg | 
							⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝐹  “  𝑥 )  ∈  V  →  dom  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  =  𝐵 )  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							3syl | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  dom  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  =  𝐵 )  | 
						
						
							| 17 | 
							
								
							 | 
							fbasne0 | 
							⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  𝐵  ≠  ∅ )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  𝐵  ≠  ∅ )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							eqnetrd | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  dom  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ≠  ∅ )  | 
						
						
							| 20 | 
							
								
							 | 
							dm0rn0 | 
							⊢ ( dom  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  =  ∅  ↔  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  =  ∅ )  | 
						
						
							| 21 | 
							
								20
							 | 
							necon3bii | 
							⊢ ( dom  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ≠  ∅  ↔  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ≠  ∅ )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sylib | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ≠  ∅ )  | 
						
						
							| 23 | 
							
								10 22
							 | 
							eqnetrd | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  𝐶  ≠  ∅ )  | 
						
						
							| 24 | 
							
								
							 | 
							fbelss | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ⊆  𝑋 )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑥  ∈  𝐵  →  𝑥  ⊆  𝑋 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝑥  ∈  𝐵  →  𝑥  ⊆  𝑋 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							0nelfb | 
							⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  ¬  ∅  ∈  𝐵 )  | 
						
						
							| 28 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  ∅  →  ( 𝑥  ∈  𝐵  ↔  ∅  ∈  𝐵 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							notbid | 
							⊢ ( 𝑥  =  ∅  →  ( ¬  𝑥  ∈  𝐵  ↔  ¬  ∅  ∈  𝐵 ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							syl5ibrcom | 
							⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑥  =  ∅  →  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							con2d | 
							⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑥  ∈  𝐵  →  ¬  𝑥  =  ∅ ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝑥  ∈  𝐵  →  ¬  𝑥  =  ∅ ) )  | 
						
						
							| 33 | 
							
								26 32
							 | 
							jcad | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝑥  ∈  𝐵  →  ( 𝑥  ⊆  𝑋  ∧  ¬  𝑥  =  ∅ ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							fdm | 
							⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  dom  𝐹  =  𝑋 )  | 
						
						
							| 35 | 
							
								34
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  dom  𝐹  =  𝑋 )  | 
						
						
							| 36 | 
							
								35
							 | 
							sseq2d | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝑥  ⊆  dom  𝐹  ↔  𝑥  ⊆  𝑋 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpar | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ⊆  𝑋 )  →  𝑥  ⊆  dom  𝐹 )  | 
						
						
							| 38 | 
							
								
							 | 
							sseqin2 | 
							⊢ ( 𝑥  ⊆  dom  𝐹  ↔  ( dom  𝐹  ∩  𝑥 )  =  𝑥 )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							sylib | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ⊆  𝑋 )  →  ( dom  𝐹  ∩  𝑥 )  =  𝑥 )  | 
						
						
							| 40 | 
							
								39
							 | 
							eqeq1d | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ⊆  𝑋 )  →  ( ( dom  𝐹  ∩  𝑥 )  =  ∅  ↔  𝑥  =  ∅ ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							biimpd | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ⊆  𝑋 )  →  ( ( dom  𝐹  ∩  𝑥 )  =  ∅  →  𝑥  =  ∅ ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							con3d | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  𝑥  ⊆  𝑋 )  →  ( ¬  𝑥  =  ∅  →  ¬  ( dom  𝐹  ∩  𝑥 )  =  ∅ ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							expimpd | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝑥  ⊆  𝑋  ∧  ¬  𝑥  =  ∅ )  →  ¬  ( dom  𝐹  ∩  𝑥 )  =  ∅ ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqcom | 
							⊢ ( ∅  =  ( 𝐹  “  𝑥 )  ↔  ( 𝐹  “  𝑥 )  =  ∅ )  | 
						
						
							| 45 | 
							
								
							 | 
							imadisj | 
							⊢ ( ( 𝐹  “  𝑥 )  =  ∅  ↔  ( dom  𝐹  ∩  𝑥 )  =  ∅ )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							bitri | 
							⊢ ( ∅  =  ( 𝐹  “  𝑥 )  ↔  ( dom  𝐹  ∩  𝑥 )  =  ∅ )  | 
						
						
							| 47 | 
							
								46
							 | 
							notbii | 
							⊢ ( ¬  ∅  =  ( 𝐹  “  𝑥 )  ↔  ¬  ( dom  𝐹  ∩  𝑥 )  =  ∅ )  | 
						
						
							| 48 | 
							
								43 47
							 | 
							imbitrrdi | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝑥  ⊆  𝑋  ∧  ¬  𝑥  =  ∅ )  →  ¬  ∅  =  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 49 | 
							
								33 48
							 | 
							syld | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝑥  ∈  𝐵  →  ¬  ∅  =  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							ralrimiv | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ∀ 𝑥  ∈  𝐵 ¬  ∅  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 51 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( ∅  ∈  𝐶  ↔  ∅  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 53 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							elrnmpt | 
							⊢ ( ∅  ∈  V  →  ( ∅  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐵 ∅  =  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 55 | 
							
								52 54
							 | 
							ax-mp | 
							⊢ ( ∅  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐵 ∅  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 56 | 
							
								51 55
							 | 
							bitri | 
							⊢ ( ∅  ∈  𝐶  ↔  ∃ 𝑥  ∈  𝐵 ∅  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							notbii | 
							⊢ ( ¬  ∅  ∈  𝐶  ↔  ¬  ∃ 𝑥  ∈  𝐵 ∅  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							df-nel | 
							⊢ ( ∅  ∉  𝐶  ↔  ¬  ∅  ∈  𝐶 )  | 
						
						
							| 59 | 
							
								
							 | 
							ralnex | 
							⊢ ( ∀ 𝑥  ∈  𝐵 ¬  ∅  =  ( 𝐹  “  𝑥 )  ↔  ¬  ∃ 𝑥  ∈  𝐵 ∅  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 60 | 
							
								57 58 59
							 | 
							3bitr4i | 
							⊢ ( ∅  ∉  𝐶  ↔  ∀ 𝑥  ∈  𝐵 ¬  ∅  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 61 | 
							
								50 60
							 | 
							sylibr | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ∅  ∉  𝐶 )  | 
						
						
							| 62 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝑟  ∈  𝐶  ↔  𝑟  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝐹  “  𝑥 )  =  ( 𝐹  “  𝑢 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							cbvmptv | 
							⊢ ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  =  ( 𝑢  ∈  𝐵  ↦  ( 𝐹  “  𝑢 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							elrnmpt | 
							⊢ ( 𝑟  ∈  V  →  ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑢  ∈  𝐵 𝑟  =  ( 𝐹  “  𝑢 ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							elv | 
							⊢ ( 𝑟  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑢  ∈  𝐵 𝑟  =  ( 𝐹  “  𝑢 ) )  | 
						
						
							| 67 | 
							
								62 66
							 | 
							bitri | 
							⊢ ( 𝑟  ∈  𝐶  ↔  ∃ 𝑢  ∈  𝐵 𝑟  =  ( 𝐹  “  𝑢 ) )  | 
						
						
							| 68 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝑠  ∈  𝐶  ↔  𝑠  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑥  =  𝑣  →  ( 𝐹  “  𝑥 )  =  ( 𝐹  “  𝑣 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							cbvmptv | 
							⊢ ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  =  ( 𝑣  ∈  𝐵  ↦  ( 𝐹  “  𝑣 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							elrnmpt | 
							⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑣  ∈  𝐵 𝑠  =  ( 𝐹  “  𝑣 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							elv | 
							⊢ ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑣  ∈  𝐵 𝑠  =  ( 𝐹  “  𝑣 ) )  | 
						
						
							| 73 | 
							
								68 72
							 | 
							bitri | 
							⊢ ( 𝑠  ∈  𝐶  ↔  ∃ 𝑣  ∈  𝐵 𝑠  =  ( 𝐹  “  𝑣 ) )  | 
						
						
							| 74 | 
							
								67 73
							 | 
							anbi12i | 
							⊢ ( ( 𝑟  ∈  𝐶  ∧  𝑠  ∈  𝐶 )  ↔  ( ∃ 𝑢  ∈  𝐵 𝑟  =  ( 𝐹  “  𝑢 )  ∧  ∃ 𝑣  ∈  𝐵 𝑠  =  ( 𝐹  “  𝑣 ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							reeanv | 
							⊢ ( ∃ 𝑢  ∈  𝐵 ∃ 𝑣  ∈  𝐵 ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) )  ↔  ( ∃ 𝑢  ∈  𝐵 𝑟  =  ( 𝐹  “  𝑢 )  ∧  ∃ 𝑣  ∈  𝐵 𝑠  =  ( 𝐹  “  𝑣 ) ) )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							bitr4i | 
							⊢ ( ( 𝑟  ∈  𝐶  ∧  𝑠  ∈  𝐶 )  ↔  ∃ 𝑢  ∈  𝐵 ∃ 𝑣  ∈  𝐵 ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							fbasssin | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  ∃ 𝑤  ∈  𝐵 𝑤  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							3expb | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ∃ 𝑤  ∈  𝐵 𝑤  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							3ad2antl1 | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ∃ 𝑤  ∈  𝐵 𝑤  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantrr | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) ) )  →  ∃ 𝑤  ∈  𝐵 𝑤  ⊆  ( 𝑢  ∩  𝑣 ) )  | 
						
						
							| 81 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑤 )  | 
						
						
							| 82 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝐹  “  𝑥 )  =  ( 𝐹  “  𝑤 ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							rspceeqv | 
							⊢ ( ( 𝑤  ∈  𝐵  ∧  ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑤 ) )  →  ∃ 𝑥  ∈  𝐵 ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 84 | 
							
								81 83
							 | 
							mpan2 | 
							⊢ ( 𝑤  ∈  𝐵  →  ∃ 𝑥  ∈  𝐵 ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							ad2antrl | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ∃ 𝑥  ∈  𝐵 ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑥 ) )  | 
						
						
							| 86 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( ( 𝐹  “  𝑤 )  ∈  𝐶  ↔  ( 𝐹  “  𝑤 )  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							vex | 
							⊢ 𝑤  ∈  V  | 
						
						
							| 88 | 
							
								87
							 | 
							funimaex | 
							⊢ ( Fun  𝐹  →  ( 𝐹  “  𝑤 )  ∈  V )  | 
						
						
							| 89 | 
							
								53
							 | 
							elrnmpt | 
							⊢ ( ( 𝐹  “  𝑤 )  ∈  V  →  ( ( 𝐹  “  𝑤 )  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐵 ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 90 | 
							
								12 88 89
							 | 
							3syl | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝐹  “  𝑤 )  ∈  ran  ( 𝑥  ∈  𝐵  ↦  ( 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐵 ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 91 | 
							
								86 90
							 | 
							bitrid | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝐹  “  𝑤 )  ∈  𝐶  ↔  ∃ 𝑥  ∈  𝐵 ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ( ( 𝐹  “  𝑤 )  ∈  𝐶  ↔  ∃ 𝑥  ∈  𝐵 ( 𝐹  “  𝑤 )  =  ( 𝐹  “  𝑥 ) ) )  | 
						
						
							| 93 | 
							
								85 92
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ( 𝐹  “  𝑤 )  ∈  𝐶 )  | 
						
						
							| 94 | 
							
								
							 | 
							imass2 | 
							⊢ ( 𝑤  ⊆  ( 𝑢  ∩  𝑣 )  →  ( 𝐹  “  𝑤 )  ⊆  ( 𝐹  “  ( 𝑢  ∩  𝑣 ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							ad2antll | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ( 𝐹  “  𝑤 )  ⊆  ( 𝐹  “  ( 𝑢  ∩  𝑣 ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝑢  ∩  𝑣 )  ⊆  𝑢  | 
						
						
							| 97 | 
							
								
							 | 
							imass2 | 
							⊢ ( ( 𝑢  ∩  𝑣 )  ⊆  𝑢  →  ( 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝐹  “  𝑢 ) )  | 
						
						
							| 98 | 
							
								96 97
							 | 
							ax-mp | 
							⊢ ( 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝐹  “  𝑢 )  | 
						
						
							| 99 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑢  ∩  𝑣 )  ⊆  𝑣  | 
						
						
							| 100 | 
							
								
							 | 
							imass2 | 
							⊢ ( ( 𝑢  ∩  𝑣 )  ⊆  𝑣  →  ( 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝐹  “  𝑣 ) )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							ax-mp | 
							⊢ ( 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝐹  “  𝑣 )  | 
						
						
							| 102 | 
							
								98 101
							 | 
							ssini | 
							⊢ ( 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( ( 𝐹  “  𝑢 )  ∩  ( 𝐹  “  𝑣 ) )  | 
						
						
							| 103 | 
							
								
							 | 
							ineq12 | 
							⊢ ( ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) )  →  ( 𝑟  ∩  𝑠 )  =  ( ( 𝐹  “  𝑢 )  ∩  ( 𝐹  “  𝑣 ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ( 𝑟  ∩  𝑠 )  =  ( ( 𝐹  “  𝑢 )  ∩  ( 𝐹  “  𝑣 ) ) )  | 
						
						
							| 105 | 
							
								102 104
							 | 
							sseqtrrid | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ( 𝐹  “  ( 𝑢  ∩  𝑣 ) )  ⊆  ( 𝑟  ∩  𝑠 ) )  | 
						
						
							| 106 | 
							
								95 105
							 | 
							sstrd | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ( 𝐹  “  𝑤 )  ⊆  ( 𝑟  ∩  𝑠 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑧  =  ( 𝐹  “  𝑤 )  →  ( 𝑧  ⊆  ( 𝑟  ∩  𝑠 )  ↔  ( 𝐹  “  𝑤 )  ⊆  ( 𝑟  ∩  𝑠 ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							rspcev | 
							⊢ ( ( ( 𝐹  “  𝑤 )  ∈  𝐶  ∧  ( 𝐹  “  𝑤 )  ⊆  ( 𝑟  ∩  𝑠 ) )  →  ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) )  | 
						
						
							| 109 | 
							
								93 106 108
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							adantlrl | 
							⊢ ( ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) ) )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑤  ⊆  ( 𝑢  ∩  𝑣 ) ) )  →  ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) )  | 
						
						
							| 111 | 
							
								80 110
							 | 
							rexlimddv | 
							⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  ∧  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  ∧  ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) ) ) )  →  ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							exp32 | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  ( ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) )  →  ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							rexlimdvv | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( ∃ 𝑢  ∈  𝐵 ∃ 𝑣  ∈  𝐵 ( 𝑟  =  ( 𝐹  “  𝑢 )  ∧  𝑠  =  ( 𝐹  “  𝑣 ) )  →  ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) ) )  | 
						
						
							| 114 | 
							
								76 113
							 | 
							biimtrid | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝑟  ∈  𝐶  ∧  𝑠  ∈  𝐶 )  →  ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							ralrimivv | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ∀ 𝑟  ∈  𝐶 ∀ 𝑠  ∈  𝐶 ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) )  | 
						
						
							| 116 | 
							
								23 61 115
							 | 
							3jca | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝐶  ≠  ∅  ∧  ∅  ∉  𝐶  ∧  ∀ 𝑟  ∈  𝐶 ∀ 𝑠  ∈  𝐶 ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) ) )  | 
						
						
							| 117 | 
							
								
							 | 
							isfbas2 | 
							⊢ ( 𝑌  ∈  𝑉  →  ( 𝐶  ∈  ( fBas ‘ 𝑌 )  ↔  ( 𝐶  ⊆  𝒫  𝑌  ∧  ( 𝐶  ≠  ∅  ∧  ∅  ∉  𝐶  ∧  ∀ 𝑟  ∈  𝐶 ∀ 𝑠  ∈  𝐶 ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) ) ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  ( 𝐶  ∈  ( fBas ‘ 𝑌 )  ↔  ( 𝐶  ⊆  𝒫  𝑌  ∧  ( 𝐶  ≠  ∅  ∧  ∅  ∉  𝐶  ∧  ∀ 𝑟  ∈  𝐶 ∀ 𝑠  ∈  𝐶 ∃ 𝑧  ∈  𝐶 𝑧  ⊆  ( 𝑟  ∩  𝑠 ) ) ) ) )  | 
						
						
							| 119 | 
							
								9 116 118
							 | 
							mpbir2and | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  𝑉 )  →  𝐶  ∈  ( fBas ‘ 𝑌 ) )  |