Step |
Hyp |
Ref |
Expression |
1 |
|
fbasrn.c |
⊢ 𝐶 = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) |
2 |
|
simpl3 |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑌 ∈ 𝑉 ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
4 |
|
fimass |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
6 |
2 5
|
sselpwd |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ 𝒫 𝑌 ) |
7 |
6
|
fmpttd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐵 ⟶ 𝒫 𝑌 ) |
8 |
7
|
frnd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
9 |
1 8
|
eqsstrid |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ⊆ 𝒫 𝑌 ) |
10 |
1
|
a1i |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
11 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → Fun 𝐹 ) |
13 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ V ) |
14 |
13
|
ralrimiva |
⊢ ( Fun 𝐹 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ∈ V ) |
15 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ∈ V → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = 𝐵 ) |
16 |
12 14 15
|
3syl |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = 𝐵 ) |
17 |
|
fbasne0 |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ≠ ∅ ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐵 ≠ ∅ ) |
19 |
16 18
|
eqnetrd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
20 |
|
dm0rn0 |
⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ∅ ↔ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ∅ ) |
21 |
20
|
necon3bii |
⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
22 |
19 21
|
sylib |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
23 |
10 22
|
eqnetrd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ≠ ∅ ) |
24 |
|
fbelss |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ⊆ 𝑋 ) |
25 |
24
|
ex |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋 ) ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋 ) ) |
27 |
|
0nelfb |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐵 ) |
28 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐵 ↔ ∅ ∈ 𝐵 ) ) |
29 |
28
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ ∅ ∈ 𝐵 ) ) |
30 |
27 29
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 = ∅ → ¬ 𝑥 ∈ 𝐵 ) ) |
31 |
30
|
con2d |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅ ) ) |
32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅ ) ) |
33 |
26 32
|
jcad |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) ) ) |
34 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom 𝐹 = 𝑋 ) |
36 |
35
|
sseq2d |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ⊆ dom 𝐹 ↔ 𝑥 ⊆ 𝑋 ) ) |
37 |
36
|
biimpar |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ⊆ dom 𝐹 ) |
38 |
|
sseqin2 |
⊢ ( 𝑥 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑥 ) = 𝑥 ) |
39 |
37 38
|
sylib |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( dom 𝐹 ∩ 𝑥 ) = 𝑥 ) |
40 |
39
|
eqeq1d |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( dom 𝐹 ∩ 𝑥 ) = ∅ ↔ 𝑥 = ∅ ) ) |
41 |
40
|
biimpd |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( dom 𝐹 ∩ 𝑥 ) = ∅ → 𝑥 = ∅ ) ) |
42 |
41
|
con3d |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 = ∅ → ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) ) |
43 |
42
|
expimpd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) ) |
44 |
|
eqcom |
⊢ ( ∅ = ( 𝐹 “ 𝑥 ) ↔ ( 𝐹 “ 𝑥 ) = ∅ ) |
45 |
|
imadisj |
⊢ ( ( 𝐹 “ 𝑥 ) = ∅ ↔ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
46 |
44 45
|
bitri |
⊢ ( ∅ = ( 𝐹 “ 𝑥 ) ↔ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
47 |
46
|
notbii |
⊢ ( ¬ ∅ = ( 𝐹 “ 𝑥 ) ↔ ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
48 |
43 47
|
syl6ibr |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ∅ = ( 𝐹 “ 𝑥 ) ) ) |
49 |
33 48
|
syld |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ¬ ∅ = ( 𝐹 “ 𝑥 ) ) ) |
50 |
49
|
ralrimiv |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ) |
51 |
1
|
eleq2i |
⊢ ( ∅ ∈ 𝐶 ↔ ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
52 |
|
0ex |
⊢ ∅ ∈ V |
53 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) |
54 |
53
|
elrnmpt |
⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) ) |
55 |
52 54
|
ax-mp |
⊢ ( ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
56 |
51 55
|
bitri |
⊢ ( ∅ ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
57 |
56
|
notbii |
⊢ ( ¬ ∅ ∈ 𝐶 ↔ ¬ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
58 |
|
df-nel |
⊢ ( ∅ ∉ 𝐶 ↔ ¬ ∅ ∈ 𝐶 ) |
59 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
60 |
57 58 59
|
3bitr4i |
⊢ ( ∅ ∉ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ) |
61 |
50 60
|
sylibr |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∅ ∉ 𝐶 ) |
62 |
1
|
eleq2i |
⊢ ( 𝑟 ∈ 𝐶 ↔ 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
63 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑢 ) ) |
64 |
63
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑢 ∈ 𝐵 ↦ ( 𝐹 “ 𝑢 ) ) |
65 |
64
|
elrnmpt |
⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) ) |
66 |
65
|
elv |
⊢ ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) |
67 |
62 66
|
bitri |
⊢ ( 𝑟 ∈ 𝐶 ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) |
68 |
1
|
eleq2i |
⊢ ( 𝑠 ∈ 𝐶 ↔ 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
69 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑣 ) ) |
70 |
69
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑣 ∈ 𝐵 ↦ ( 𝐹 “ 𝑣 ) ) |
71 |
70
|
elrnmpt |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
72 |
71
|
elv |
⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) |
73 |
68 72
|
bitri |
⊢ ( 𝑠 ∈ 𝐶 ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) |
74 |
67 73
|
anbi12i |
⊢ ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) ↔ ( ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
75 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ↔ ( ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
76 |
74 75
|
bitr4i |
⊢ ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
77 |
|
fbasssin |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
78 |
77
|
3expb |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
79 |
78
|
3ad2antl1 |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
80 |
79
|
adantrr |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
81 |
|
eqid |
⊢ ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑤 ) |
82 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑤 ) ) |
83 |
82
|
rspceeqv |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑤 ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
84 |
81 83
|
mpan2 |
⊢ ( 𝑤 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
85 |
84
|
ad2antrl |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
86 |
1
|
eleq2i |
⊢ ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
87 |
|
vex |
⊢ 𝑤 ∈ V |
88 |
87
|
funimaex |
⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑤 ) ∈ V ) |
89 |
53
|
elrnmpt |
⊢ ( ( 𝐹 “ 𝑤 ) ∈ V → ( ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
90 |
12 88 89
|
3syl |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
91 |
86 90
|
syl5bb |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
92 |
91
|
ad2antrr |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
93 |
85 92
|
mpbird |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ∈ 𝐶 ) |
94 |
|
imass2 |
⊢ ( 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
95 |
94
|
ad2antll |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
96 |
|
inss1 |
⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 |
97 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) |
98 |
96 97
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑢 ) |
99 |
|
inss2 |
⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 |
100 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑣 ) ) |
101 |
99 100
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑣 ) |
102 |
98 101
|
ssini |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) |
103 |
|
ineq12 |
⊢ ( ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) ) |
104 |
103
|
ad2antlr |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) ) |
105 |
102 104
|
sseqtrrid |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
106 |
95 105
|
sstrd |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
107 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ↔ ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
108 |
107
|
rspcev |
⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ∧ ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
109 |
93 106 108
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
110 |
109
|
adantlrl |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
111 |
80 110
|
rexlimddv |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
112 |
111
|
exp32 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) |
113 |
112
|
rexlimdvv |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
114 |
76 113
|
syl5bi |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
115 |
114
|
ralrimivv |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
116 |
23 61 115
|
3jca |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
117 |
|
isfbas2 |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
118 |
117
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
119 |
9 116 118
|
mpbir2and |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) ) |