Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐹 ⊆ 𝒫 𝑌 ) |
2 |
|
simp1 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
3 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ dom fBas ) |
5 |
|
isfbas |
⊢ ( 𝑋 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
7 |
2 6
|
mpbid |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
8 |
7
|
simprd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) |
9 |
|
isfbas |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐹 ⊆ 𝒫 𝑌 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐹 ⊆ 𝒫 𝑌 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
11 |
1 8 10
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |