Step |
Hyp |
Ref |
Expression |
1 |
|
0nelfb |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 ) |
2 |
|
fveq2 |
⊢ ( 𝐵 = ∅ → ( fBas ‘ 𝐵 ) = ( fBas ‘ ∅ ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝐵 = ∅ → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ 𝐹 ∈ ( fBas ‘ ∅ ) ) ) |
4 |
3
|
biimpd |
⊢ ( 𝐵 = ∅ → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ∈ ( fBas ‘ ∅ ) ) ) |
5 |
|
fbasne0 |
⊢ ( 𝐹 ∈ ( fBas ‘ ∅ ) → 𝐹 ≠ ∅ ) |
6 |
|
n0 |
⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) |
7 |
5 6
|
sylib |
⊢ ( 𝐹 ∈ ( fBas ‘ ∅ ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
8 |
|
fbelss |
⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ ∅ ) |
9 |
|
ss0 |
⊢ ( 𝑥 ⊆ ∅ → 𝑥 = ∅ ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 = ∅ ) |
11 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) |
12 |
10 11
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → ∅ ∈ 𝐹 ) |
13 |
7 12
|
exlimddv |
⊢ ( 𝐹 ∈ ( fBas ‘ ∅ ) → ∅ ∈ 𝐹 ) |
14 |
4 13
|
syl6com |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐵 = ∅ → ∅ ∈ 𝐹 ) ) |
15 |
14
|
necon3bd |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( ¬ ∅ ∈ 𝐹 → 𝐵 ≠ ∅ ) ) |
16 |
1 15
|
mpd |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐵 ≠ ∅ ) |