| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0nelfb | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ¬  ∅  ∈  𝐹 )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐵  =  ∅  →  ( fBas ‘ 𝐵 )  =  ( fBas ‘ ∅ ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq2d | 
							⊢ ( 𝐵  =  ∅  →  ( 𝐹  ∈  ( fBas ‘ 𝐵 )  ↔  𝐹  ∈  ( fBas ‘ ∅ ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpd | 
							⊢ ( 𝐵  =  ∅  →  ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  𝐹  ∈  ( fBas ‘ ∅ ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fbasne0 | 
							⊢ ( 𝐹  ∈  ( fBas ‘ ∅ )  →  𝐹  ≠  ∅ )  | 
						
						
							| 6 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝐹  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐹 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylib | 
							⊢ ( 𝐹  ∈  ( fBas ‘ ∅ )  →  ∃ 𝑥 𝑥  ∈  𝐹 )  | 
						
						
							| 8 | 
							
								
							 | 
							fbelss | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  𝑥  ⊆  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							ss0 | 
							⊢ ( 𝑥  ⊆  ∅  →  𝑥  =  ∅ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  𝑥  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  𝑥  ∈  𝐹 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeltrrd | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ ∅ )  ∧  𝑥  ∈  𝐹 )  →  ∅  ∈  𝐹 )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							exlimddv | 
							⊢ ( 𝐹  ∈  ( fBas ‘ ∅ )  →  ∅  ∈  𝐹 )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							syl6com | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ( 𝐵  =  ∅  →  ∅  ∈  𝐹 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							necon3bd | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  ( ¬  ∅  ∈  𝐹  →  𝐵  ≠  ∅ ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							mpd | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝐵 )  →  𝐵  ≠  ∅ )  |